Курсовое проектирование ДЕТАЛЕИ МАШИН

Курсовое проектирование ДЕТАЛЕИ МАШИН

Издание второе переработанное и дополненное

Допущено Министерством высшего и среднего специального образования СССР в качестве учебного пособия для учащихся машиностроительных специальностей техникумов

ББК 34.41 К93 УДК 621.81(075.3)

Авторы: С. А. Чернавский, К. Н. Боков, И. М. Чернин, Г. М. Ицкович, В. П. Козинцов

Редактор д-р техн. наук профессор С. А. Чернавский Рецензент канд. техн. наук А. В. Карп

Курсовое проектирование деталей машин: Учеб. К93 пособие для учащихся машиностроительных специальностей техникумов/С. А. Чернавский, К. Н. Боков, И. М. Чернин и др.—2-е изд., перераб. и доп. — М.: Машиностроение, 1988. — 416 с.: ил. (В пер.): 1 р.

Изложены методы расчета приводов, редукторов, передач (зубчатых, червячных, цепных, ременных, планетарных и волновых). Рассмотрены основы конструирования деталей редукторов. Даны примеры проектирования редукторов и передач.

меры проектирования редукторов и передач.
Второе издание (1-е изд. 1979 г.) переработано и дополнено новыми материалами в соответствии с действующими ГОСТами и методами проектирования основных видов механических передач и их деталей.

ББК 34.41

© Издательство «Машиностроение», 1979.

 Издательство «Машиностроение», 1987, с изменениями.

ПРЕДИСЛОВИЕ

Учебное пособие содержит сведения, необходимые для выполнения курсовых проектов по деталям машин в техникумах. Оно составлено в соответствии с программой технической механики, утвержденной для машиностроительных техникумов.

По сравнению с предыдущим изданием, второе издание существенно переработано и дополнено в связи с введением новых стандартов и совершенствованием методов расчета и конструирования механических передач и их деталей. В соответствии с необходимостью использования в учебном процессе компьютеров, в пособии представлены алгоритмы, которые могут служить основой для разработки программ для ЭВМ.

Приложения дополнены новыми справочными сведениями.

Авторы с признательностью примут все замечания и пожелания по настоящему изданию.

Просьба направлять их по адресу: 107076, Москва, Стромынский пер., д. 4, издательство «Машиностроение».

ГЛАВА Т

КИНЕМАТИЧЕСКИЙ РАСЧЕТ ПРИВОДА

§ 1.1. ОПРЕДЕЛЕНИЕ ТРЕБУЕМОЙ МОЩНОСТИ ЭЛЕКТРОДВИГАТЕЛЯ

В типовых заданиях на курсовое проектирование деталей машин указывается кинематическая схема привода к конвейеру, смесителю, кормораздатчику и другим устройствам, эксплуатируемым в режиме, близком к постоянному. К исходным данным относятся эксплуатационные, загрузочные и энергетические характеристики.

Учащиеся техникума должны рассчитать все элементы привода и разработать конструкцию одноступенчатого зубчатого или червячного редуктора и дополнительно одну из гибких передач — ременную или цепную.

Первый этап проектирования — анализ кинематической схемы и выбор электродвигателя.

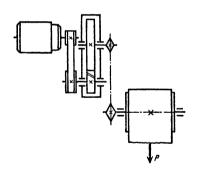
На рис. 1.1 показана одна из типовых схем привода к ленточному конвейеру: от электродвигателя вращение передается валу барабана через ременную передачу, зубчатый одноступенчатый редуктор и цепную передачу.

Для определения требуемой мощности электродвигателя в задании должны быть указаны вращающий момент T_p ($H \cdot M$) на валу барабана и угловая скорость ω_p (рад/с) этого вала или же сила тяги F (H) и скорость v (M/с) ленты.

Искомую мощность P (Вт) электродвигателя определяют из выражения

$$P = \frac{T_{\rm p}\omega_{\rm p}}{\eta} = \frac{Fv}{\eta}.$$
 (1.1)

Здесь η — коэффициент полезного действия (КПД) привода, равный произведению частных КПД передач, входящих в кинематическую схему:


$$\eta = \eta_1 \eta_2 \eta_3 \dots \eta_{\kappa}. \tag{1.2}$$

Значения КПД передач отдельных типов приведены в табл. 1.1.

1.1. Значения КПД механических передач

Передача	кпд
Зубчатая в закрытом корпусе (редуктор):	0.07 0.00
цилиндрическими колесами	0,97 - 0,98
коническими колесами	0,96 - 0,97
Зубчатая открытая	0,95 - 0,96
Червячная в закрытом корпусе при числе витков	
(заходов) червяка:	
$z_1 = 1$	0,70 0,75
$z_1 = 2$	0,80 - 0,85
$z_1 = 4$	0,85-0,95
Цепная закрытая	0,95 - 0,97
Цепная открытая	0,90 - 0,95
Ременная:	
плоским ремнем	0,96 - 0,98
клиновыми ремнями	0,95-0,97

Примечание. Потери на трение в опорах каждого вала учитываются множителем $\eta_0 = 0.99 \div 0.995$.

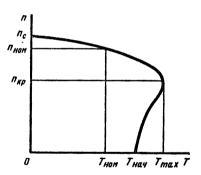


Рис. 1.1. Кинематическая схема привода ленточного конвейера

Рис. 1.2. Характеристика асинхронного двигателя трехфазного тока

§ 1.2. ВЫБОР ЭЛЕКТРОДВИГАТЕЛЯ

Мощность электродвигателя, подбираемого для проектируемого привода, должна быть не ниже той, которая определена по формуле (1.1). Из существующих типов двигателей выбирают преимущественно асинхронные электродвигатели трехфазного тока единой серии 4A.

На рис. 1.2 представлена характеристика асинхронного двигателя трехфазного тока, выражающая зависимость частоты

вращения n (об/мин) вала двигателя от величины вращающего момента T ($H \cdot M$). По оси абсцисс отложены значения $T_{\text{ном}}$ — номинального вращающего момента, $T_{\text{пуск}}$ — пускового или начального вращающего момента, развиваемого при пуске двигателя, T_{max} — максимального кратковременного момента; по оси ординат отложены значения частот вращения: номинальной $n_{\text{вом}}$, критической $n_{\text{кр}}$ и синхронной $n_{\text{с}}$, развиваемой при отсутствии нагрузки и равной частоте вращения магнитного поля; она зависит от частоты тока f и числа пар полюсов p:

$$n_{\rm c}=\frac{60f}{p};$$

соответствующая угловая скорость, рад/с,

$$\omega_{\rm c} = \frac{2\pi f}{p}$$
.

При стандартной частоте тока $f = 50 \text{ c}^{-1}$ и числе пар полюсов $p = 1 \div 6$ синхронная частота вращения n_c будет равна соответственно 3000; 1500; 1000; 750; 600 и 500 об/мин. Для приводов, разрабатываемых в курсовых проектах, рекомендуется выбирать двигатели с числом полюсов не более восьми, а лучше — не более шести, т. е. с $p \le 3$ и $n_c \ge 1000$ об/мин.

При возрастании нагрузки частота вращения вала двигателя уменьшается вследствие скольжения s, определяемого по формуле

$$s=\frac{n_{\rm c}-n}{n_{\rm c}},$$

откуда

$$n = n_c (1 - s). (1.3)$$

При пуске двигателя $T=T_{\text{пуск}}$ (или $T_{\text{нач}}$), s=1 и n=0; при номинальном режиме $T=T_{\text{ном}}$ $s=0,02\div0,05$; $n_{\text{ном}}\approx (0.98\div0.95)\,n_{\text{c}}$; при отсутствии нагрузки T=0 s=0; $n=n_{\text{c}}$.

Технические данные асинхронных электродвигателей единой серии 4A в закрытом обдуваемом исполнении приведены в таблицах приложения.

§ 1.3. ПЕРЕДАТОЧНОЕ ОТНОШЕНИЕ ПРИВОДА

В исходных данных на курсовое проектирование привода указывают частоту вращения n_p (об/мин) рабочего приводного вала или же диаметр D (м) барабана конвейера и скорость v (м/с) ленты; по этим данным находят

$$n_{\rm p}=\frac{60v}{\pi D},$$

определяют общее передаточное отношение всего привода $i=n_{\rm Hom}/n_{\rm p}$ и намечают ориентировочно значения частных передаточных отношений передач, входящих в привод, так, чтобы произведение их было равно общему передаточному отношению: $i_1i_2...i_{\rm k}=i$.

Средние значения i_i для зубчатых передач равны 2-6, для червячных передач 8-80, цепных 3-6, ременных 2-4.

Уточненные значения передаточных отношений конкретных видов передач приведены в гл. III, IV и V.

Пример. Провести кинематический расчет привода, показанного на рис. 1.1. Исходные данные: диаметр барабана D = 500 мм: тяговая сила $F = 4 \cdot 10^3 \text{ H}$; скорость ленты v = 0.8 м/c.

Требуется подобрать асинхронный электродвигатель трехфазного тока, определить передаточное отношение всего привода и частные передаточные отношения каждой передачи.

Решение

Принимаем значения КПД по табл. 1.1:

ременной передачи $\eta_1 = 0.98$;

зубчатой пары $\eta_2 = 0,98$;

цепной передачи $\eta_3 = 0,96$;

коэффициент, учитывающий потери на трение в опорах трех валов $\eta_0^3 = 0.99^3$.

КПД всего привода $\eta = \eta_1 \eta_2 \eta_3 \eta_0^3 = 0.98 \cdot 0.98 \cdot 0.96 \cdot 0.99^3 = 0.89$. Требуемая мощность электродвигателя по формуле (1.1)

$$P = \frac{Fv}{n} = \frac{4 \cdot 10^3 \cdot 0.8}{0.89} = 3.6 \cdot 10^3 \text{ Bt.}$$

Частота вращения вала барабана

$$n_{\rm p} = \frac{60v}{\pi D} = \frac{60 \cdot 0.8}{3.14 \cdot 0.5} = 30.5$$
 об/мин.

По данным табл. П1 приложения, подходят электродвигатели четырех марок: 4A100S2Y3, P=4 кВт, $n_{\rm c}=3000$ об/мин, s=3.3%; 4A100L4Y3, P=4 кВт, $n_{\rm c}=1500$ об/мин, s=4,7%; 4A112MB6Y3, P=4 кВт, $n_{\rm c}=1000$ об/мин, s=5,1%; 4A132S8Y3, P=4 кВт, $n_{\rm c}=750$ об/мин, s=4,1%.

При выборе первого из указанных двигателей с $n_c = 3000$ об/мин возникнут затруднения в реализации большого передаточного числа порядка 100; двигатель с $n_c = 750$ об/мин имеет большие габариты и массу; предпочтительнее двигатели с $n_c = 1500$ и 1000 об/мин.

Номинальные частоты вращения валов этих двигателей будут соответственно:

а) $n_{\text{HOM}} = n_{\text{c}} (1 - s) = 1500 (1 - 0.047) = 1430$ об/мин;

б) $n_{\text{HOM}} = 1000 (1 - 0.051) = 949$ об/мин.

Передаточное отношение привода в случае варианта «а»

$$i = \frac{n_{\text{HOM}}}{n_{\text{D}}} = \frac{1430}{30.5} \approx 47;$$

для варианта «б»

$$i = \frac{949}{30.5} \approx 31,1.$$

Разбивка общего передаточного отношения привода допускает много решений. Например, для варианта «а» можно принять

$$i_1 = 2.5$$
; $i_2 = 5$; $i_3 = 3.8$; $i = 2.5 \cdot 5 \cdot 3.8 = 47.5$;

для варианта «б»

$$i_1 = 2$$
; $i_2 = 4$; $i_3 = 3.9$; $i = 2 \cdot 4 \cdot 3.9 = 31.2$.

Намеченные передаточные отношения в дальнейшем уточняются в соответствии с указаниями, приведенными в гл. III, IV и V, причем отклонение от расчетного передаточного отношения привода не должно превышать $\pm 3\%$.

ГЛАВА II

СВЕДЕНИЯ О РЕДУКТОРАХ

§ 2.1. ОБЩИЕ СВЕДЕНИЯ

Редуктором называют механизм, состоящий из зубчатых или червячных персдач, выполненный в виде отдельного агрегата и служащий для передачи вращения от вала двигателя к валу рабочей машины. Кинематическая схема привода может включать, помимо редуктора, открытые зубчатые передачи, цепные или ременные передачи (см., например, рис. 1.1). Указанные механизмы являются наиболее распространенной тематикой курсового проектирования.

Назначение редуктора — понижение угловой скорости и соответственно повышение вращающего момента ведомого вала по сравнению с ведущим. Механизмы для повышения угловой скорости, выполненные в виде отдельных агрегатов, называют ускорителями или мультипликаторами.

Редуктор состоит из корпуса (литого чугунного или сварного стального), в котором помещают элементы передачи — зубчатые колеса, валы, подшипники и т. д. В отдельных случаях в корпусе редуктора размещают также устройства для смазывания зацеплений и подшипников (например, внутри корпуса редуктора может быть помещен шестеренный масляный насос) или устроиства для охлаждения (например, змесвик с охлаждающей водой в корпусе червячного редуктора). Редуктор проектируют либо для привода определенной

Редуктор проектируют либо для привода определенной машины, либо по заданной нагрузке (моменту на выходном валу) и передаточному числу без указания конкретного назначения. Второй случай характерен для специализированных заводов, на которых организовано серийное производство редукторов.

Кинематические схемы и общие виды наиболее распространенных типов редукторов представлены на рис. 2.1-2.20. На кинематических схемах буквой Б обозначен входной (быстроходный) вал редуктора, буквой Т — выходной (тихоходный)

Редукторы классифицируют по следующим основным признакам: типу передачи (зубчатые, червячные или зубчато-

червячные); числу ступеней (одноступенчатые, двухс^Тупенчатые и т. д.); типу зубчатых колес (цилиндрические, конические, коническо-цилиндрические и т. д.); относительному расположению валов редуктора в пространстве (горизонтальные, вертикальные); особенностям кинематической схемы (развернутая, соосная, с раздвоенной ступенью и т. д.).

Возможности получения больших передаточных чисел при малых габаритах обеспечивают планетарные и волновые редукторы (см. главы V и VI).

§ 2.2. ОБЗОР ОСНОВНЫХ ТИПОВ РЕДУКТОРОВ

Одноступенчатые цилиндрические редукторы

Из редукторов рассматриваемого типа наиболее распространены горизонтальные (рис. 2.1). Вертикальный одноступенчатый редуктор показан на рис. 2.2. Как горизонтальные, так и вертикальные редукторы могут иметь колеса с прямыми, косыми или шевронными зубьями. Корпуса чаще выполняют литыми чугунными, реже — сварными стальными. При серийном производстве целесообразно применять литые корпуса. Валы монтируют на подшипниках качения или скольжения. Последние обычно применяют в тяжелых редукторах.

Максимальное передаточное число одноступенчатого цилиндрического редуктора по ГОСТ 2185 – $66\,u_{\rm max}=12,5$. Высота одноступенчатого редуктора с таким или близким к нему передаточным числом больше, чем двухступенчатого с тем же значением u (рис. 2.3). Поэтому практически редукторы с передаточ-

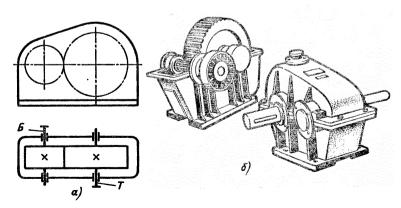


Рис 2.1 Одноступенчатый горизонтальный редуктор с цилиндрическими зубчатыми колесами: a — кинематическая схема; b — общий вид редуктора с косозубыми колесами

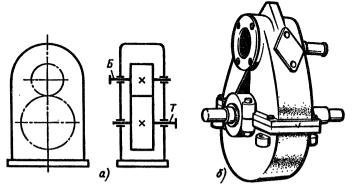


Рис. 2.2. Одноступенчатый вертикальный редуктор с цилиидрическими колесами: a — кинематическая схема: δ — общий вид

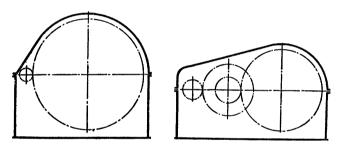


Рис. 2.3. Сопоставление габаритов одноступенчатого и двухстуненчатого редукторов с цилиндрическими колесами при одинаковом передаточном числе u=8,5

ными числами, близкими к максимальным, применяют редко, ограничиваясь $u \le 6$. Ново-Краматорский машиностроительный завод (НКМ3) выпускает крупные (межосевые расстояния $a_w = 300 \div 1000\,$ мм) одноступенчатые горизонтальные редукторы с $u = 2,53 \div 8,0$.

Выбор горизонтальной или вертикальной схемы для редукторов всех типов обусловлен удобством общей компоновки привода (относительным расположением двигателя и рабочего вала приводимой в движение машины и т. д.).

Одноступенчатые конические редукторы

Конические редукторы применяют для передачи движения между валами, оси которых пересекаются обычно под углом 90°. Передачи с углами, отличными от 90°, встречаются редко.

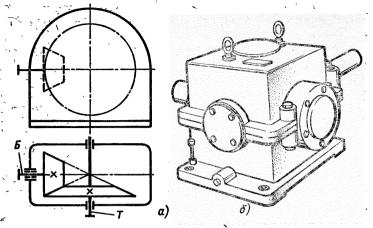


Рис. 2.4. Одиоступенчатый редуктор с коническими зубчатыми колесами: a — кинематическая схема; b — общий вид

Наиболее распространенный тип конического редуктора показан на рис. 2.4; редуктор с вертикально расположенным тихоходным валом изображен на рис. 2.5. Возможно исполнение редуктора с вертикально расположенным быстроходным валом; в этом случае привод осуществляется от фланцевого электродвигателя.

Передаточное число u одноступенчатых конических редукторов с прямозубыми колесами, как правило, не выше трех; в

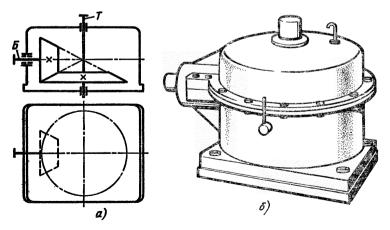


Рис 2.5 Одноступенчатын конический редуктор с вертикальным ведомым валом: a- кинематическая схема; $\delta-$ общий вид

редких случаях u = 4. При косых или криволинейных зубьях u = 5 (в виде исключения u = 6,30).

У редукторов с коническими прямозубыми колесами допускаемая окружная скорость (по делительной окружности среднего диаметра) $v \le 5$ м/с. При более высоких скоростях рекомендуют применять конические колеса с круговыми зубьями, обеспечивающими более плавное зацепление и большую несущую способность.

Двухступенчатые цилиндрические редукторы

Наиболее распространены двухступенчатые горизонтальные редукторы, выполненные по развернутой схеме (рис. 2.6). Эти

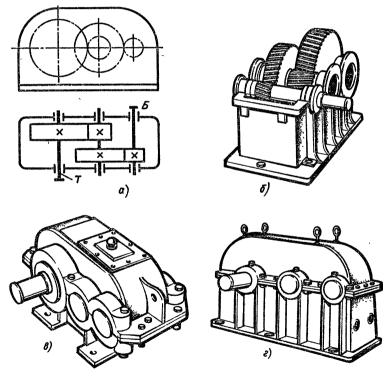


Рис. 2.6. Двухступенчатый горизонтальный редуктор с цилиндрическими колесами: a – кинематическая схема; b – редуктор со снятой крышкой (колеса косозубые); b – общий вид редуктора, у которого подшипниковые узлы закрыты врезными крышками; b – общий вид редуктора, у которого подшипниковые крышки привернуты винтами

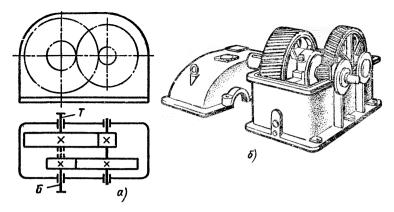


Рис. 2.7. Двухступенчатый горизонтальный соосный редуктор: a — кинематическая схема; b — общий вид

редукторы отличаются простотой, но из-за несимметричного расположения колес на валах повышается концентрация нагрузки по длине зуба. Поэтому в этих редукторах следует применять жесткие валы.

Соосная схема (рис. 2.7) позволяет получить меньшие габариты по длине; это ее основное преимущество.

В соосных редукторах быстроходная ступень зачастую недогружена*, так как силы, возникающие в зацеплении колес тихоходной ступени, значительно больше, чем в быстроходной, а межосевые расстояния ступеней одинаковы ($a_{w_b} = a_{w_t}$). Указанное обстоятельство является одним из основных недостатков соосных редукторов. Кроме того, к их недостаткам относят также:

- а) большие габариты в направлении геометрических осей валов, по сравнению с редукторами, выполненными по развернутой схеме;
- б) затруднительность смазывания подшипников, расположенных в средней части корпуса;
- в) большое расстояние между опорами промежуточного вала, поэтому требуется увеличить его диаметр для обеспечения достаточной прочности и жесткости.

^{*} При сравнительно небольшом общем передаточном числе $(u \approx 8 \div 16)$ можно (при обеспечении удовлетворительной компоновки редуктора) так произвести разбивку общего передаточного числа по ступеням, что нагрузочная способность быстроходной ступени будет использована полностью.

Очевидно, применение соосных редукторов ограничивается случаями, когда нет необходимости иметь два выходных конца быстроходного или тихоходного вала, а совпадение геометрических осей входного и выходного валов удобно при намеченной общей компоновке привода.

В отношении типа зубьев и подшипников в двухступенчатых редукторах справедливо сказанное относительно одноступенчатых цилиндрических редукторов; часто быстроходную ступень выполняют косозубой, а тихоходную — прямозубой (это относится как к соосным, так и к несоосным редукторам).

Редуктор с раздвоенной быстроходной ступенью, имеющий косозубые колеса, показан на рис. 2.8. Тихоходная ступень при этом может иметь либо шевронные колеса, либо прямозубые (рис. 2.8, 6). Кинематическая схема и общий вид редуктора с раздвоенной тихоходной ступенью показаны на рис. 2.9.

При раздвоенной быстроходной (или тихоходной) ступени колеса расположены симметрично относительно опор, что приводит к меньшей концентрации нагрузки по длине зубьев, чем при применении обычной развернутой или соосной схемы. Это позволяет иметь в рассматриваемом случае менее жесткие валы. Быстроходный вал редуктора, показанного на рис. 2.8, 6, должен иметь свободу осевого перемещения («плавающий» вал), что обеспечивается соответствующей конструкцией подшипниковых узлов; в редукторе с шевронными

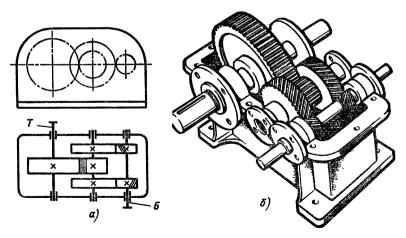


Рис. 2.8. Двухступенчатый горизонтальный редуктор с раздвоенной первой (быстроходной) ступенью: a- кинематическая схема; $\delta-$ общий вид (без крышки)

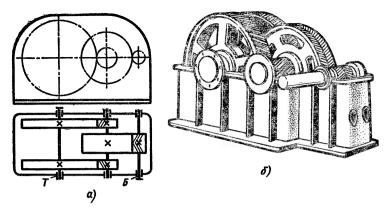


Рис. 2.9. Двухступенчатый горизонтальный редуктор с раздвоенной второй (тихоходной) ступенью: a — кинематическая схема: δ — общий вид (без крышки)

тихоходными колесами свободу осевого перемещения должен иметь и тихоходный вал. При соблюдении указанного условия нагрузка распределяется поровну между параллельно работающими парами зубчатых колес.

Схемы вертикальных цилиндрических двухступенчатых редукторов приведены на рис. 2.10.

Двухступенчатые цилиндрические редукторы обычно применяют в широком диапазоне передаточных чисел: по ГОСТ $2185-66\ u=6,3\div63$. Крупные двухступенчатые цилиндрические редукторы, выпускаемые НКМ3, имеют $u=7,33\div44,02$.

От целесообразной разбивки общего передаточного числа двухступенчатого редуктора по его отдельным ступеням в зна-

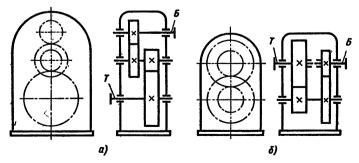
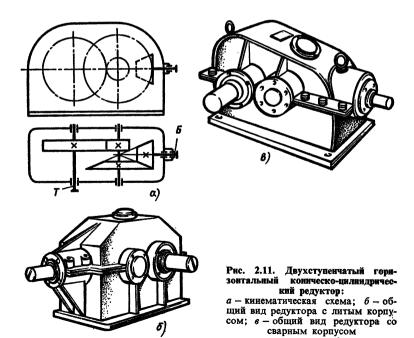
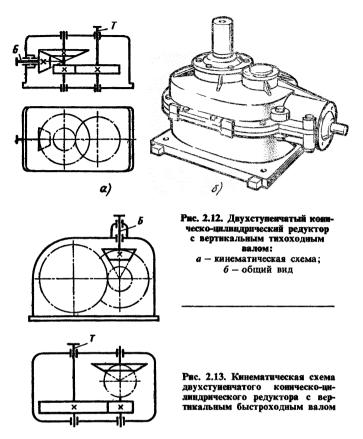


Рис 2.10. Кинематические схемы двухступенчатых цилиндрических вертикальных редукторов:

a — выполненного по развернутой схеме (трехосного): b — соосного

чительной степени зависят габариты редуктора, удобство смазывания каждой ступени, рациональность конструкции корпуса и удобство компоновки всех элементов передач. Дать рекомендации разбивки передаточного числа, удовлетворяющие всем указанным требованиям. невозможно, и поэтому все рекомендации следует рассматривать как ориентировочные.

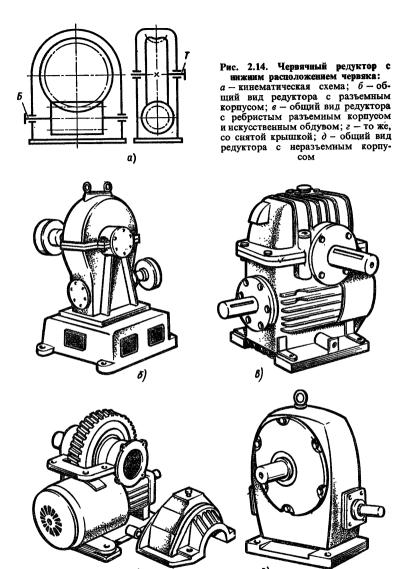

Ниже приведена разбивка передаточных чисел для некоторых двухступенчатых редукторов, выпускаемых НКМЗ:


u . . . 8,05 9,83 10,92 12,25 13,83 15,60 17,78 20,49 22,12 23,15 u_E , . . 2,30 2,808 3,125 3,500 3,950 3,950 4,500 5,187 5,600 6,615

Коническо-цилиндрические редукторы

В двухступенчатых коническо-цилиндрических редукторах (рис. 2.11 – 2.13) коническая пара может иметь прямые, косые или криволинейные зубья. Цилиндрическая пара также может быть либо прямозубой, либо косозубой.

Наиболее употребительный диапазон передаточных чисел для таких редукторов $u=8\div15$. Наибольшие значения при


прямозубых конических колесах $u_{\max}=22$; при конических колесах с круговыми зубьями $u_{\max}=34$.

Червячные редукторы

Червячные редукторы применяют для передачи движения между валами, оси которых перекрещиваются.

По относительному положению червяка и червячного колеса различают три основные схемы червячных редукторов: с нижним, верхним и боковым расположением червяка (рис. 2.14—2.16).

Искусственный обдув ребристых корпусов обеспечивает более благоприятный тепловой режим работы редуктора (рис. 2.14, в и г).

Выход вала колеса редуктора с боковым расположением червяка в зависимости от назначения и компоновки привода может быть сделан вверх (рис. 2.16, а) или вниз (рис. 2.16, б и в). При нижнем расположении червяка условия смазывания

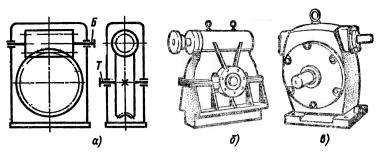


Рис. 2.15. Червячный редуктор с верхним расположением червяка: а — кинематическая схема; б — общий вид редуктора с разъемным корпусом; в — общий вид редуктора с неразъемным корпусом

зацепления лучше, при верхнем хуже, но меньше вероятность попадания в зацепление металлических частиц — продуктов износа.

Выбор схемы редуктора обычно обусловлен удобством компоновки привода в целом: при окружных скоростях червяка до 4—6 м/с предпочтительно нижнее расположение червяка; при больших скоростях возрастают потери на перемешивание масла, и в этом случае следует располагать червяк над колесом. В редукторах с верхним расположением червяка при включе-

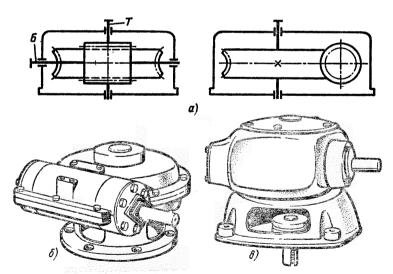


Рис. 2.16. Червячный редуктор с вертикальным валом червячного колеса: a — кинематическая схема; b — общий вид редуктора с разъемным корпусом; b — общий вид редуктора с неразъемным корпусом

нии движение обычно начинается при недостаточной смазке (за время остановки при редких включениях масло успевает стечь с зубьев колеса).

Передаточные числа червячных редукторов обычно колеблются в пределах $u = 8 \div 80$ (см. ГОСТ 2144 – 76).

Так как КПД червячных редукторов невысок, то для передачи больших мощностей и в установках, работающих непрерывно, проектировать их нецелесообразно. Практически червячные редукторы применяют для передачи мощности, как правило. до 45 кВт и в виле исключения до 150 кВт.

Зубчато-червячные, червячно-зубчатые и двухступенчатые червячные редукторы

Схемы и общий вид зубчато-червячных и двухступенчатых червячных редукторов показаны на рис. 2.17 и 2.18. Переда-

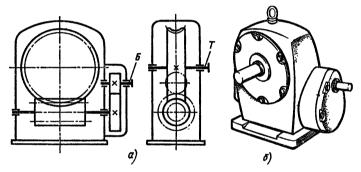
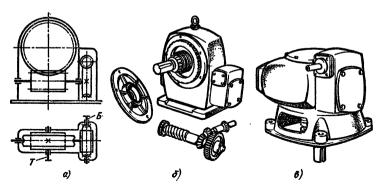
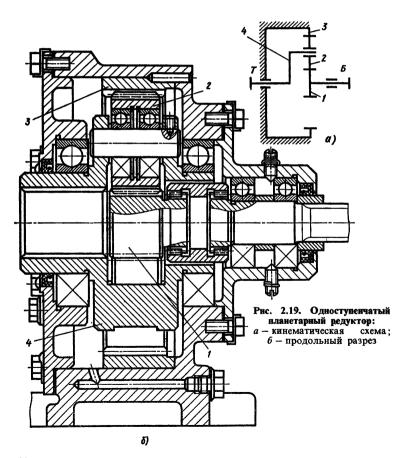


Рис. 2.17. Двухступенчатый зубчато-червячный редуктор: a — кинематическая схема; δ — общий вид




Рис. 2.18. Двухступенчатый червячный редуктор: a — кинематическая схема; b и b — варианты общего вида

точные числа зубчато-червячных редукторов $u \le 150$, а в отдельных случаях и выше (для учебного проектирования рекомендуется ограничиться $u = 35 \div 80$).

Двухступенчатые червячные редукторы изготовляют с передаточными числами $u=120 \div 2500$ (при учебном проектировании рекомендуется ограничиться $u=120 \div 400$).

Планетарные и волновые редукторы

На рис. 2.19, a показана простая—с одной степенью свободы— планетарная передача, состоящая из солнечного колеса 1, сателлитов 2 и корончатого колеса 3, неподвижно закреп-

ленного в корпусе. Сателлиты совершают сложное движение: они обкатываются вокруг солнечного колеса и вращаются внутри неподвижного корончатого колеса (некоторая аналогия с движением планет дала название этим передачам). Оси сателлитов установлены в водиле 4, геометрическая ось которого совпадает с геометрическими осями центральных колес — солнечного и корончатого. Чаще других встречаются передачи с числом сателлитов $n_c = 3$.

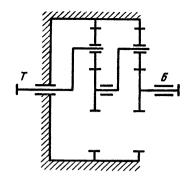


Рис. 2.20. Кинематическая схема двухступенчатого планетариого редуктора

Планетарные передачи компактнее обычных зубчатых, так как при $n_{\rm c}$ сателлитах вращающий момент передается не одним, а несколькими потоками; в
расчетах на прочность обычно принимают приведенное число
сателлитов $n_{\rm c}' = n_{\rm c} - 0.7$.

Для выравнивания нагрузки по потокам при нескольких сателлитах одно из центральных колес устанавливают без опор, т. е. выполняют плавающим в радиальном направлении. На рис. 2.19, б показан редуктор с плавающим (самоустанавливающимся) солнечным колесом. Для соединения плавающего солнечного колеса с валом применена зубчатая муфта с двумя зубчатыми сочленениями.

При последовательном соединении нескольких простых планетарных передач можно получить редуктор с большим передаточным отношением (рис. 2.20).

Волновые передачи можно рассматривать как разновидность планетарных передач, имеющих гибкое промежуточное колесо, деформируемое при передаче вращающего момента.

На рис. 2.21, а показана кинематическая схема волновой передачи: входной вал 1 приводит во вращение генератор волн 2, который представляет собой водило с двумя роликами; гибкое колесо 3 выполнено в виде тонкостенного стакана, на утолщенной части которого нарезаны зубья, входящие в зацепление с внутренними зубьями неподвижного жесткого колеса 4; выходной вал 5 соединен с основанием тонкостенного стакана.

Генератор деформирует гибкое зубчатое колесо в радиальном направлении, придавая ему форму эллипса, и вводит в зацепление зубья деталей 3 и 4 на полную рабочую высоту.

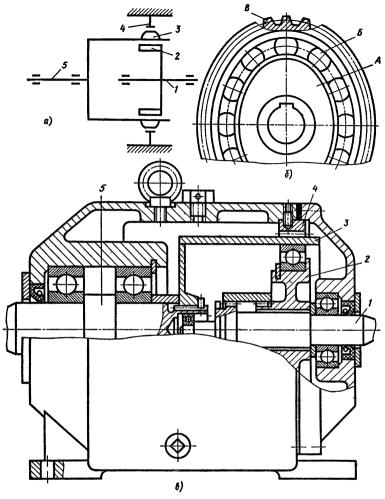


Рис. 2.21. Волновой зубчатый одноступенчатый редуктор: a — кинематическая схема; b — генератор волн; b — продольный разрез

При вращении генератора зацепление зубьев перемещается подобно бегущей волне, что и дало название этим передачам.

Широкое распространение получили кулачковые генераторы волн (рис. 2.21, δ). На профилированный кулачок A насажено внутреннее кольцо гибкого подшипника E. Наружное кольцо

гибкого подшипника сопряжено с внутренней поверхностью гибкого колеса В, обеспечивая ему заданную форму деформации. Кольца гибкого подшипника имеют малую толщину и поэтому сравнительно легко деформируются. Ниже приведены для сравнения размеры двух подшипников с одним и тем же внутренним диаметром: гибкого и обычного шарикового радиального легкой серии:

Ř	Подшипник	d	D	В	d_{m}	s
		′ ММ				
\$ 2	Гибкий	60	80	13	7,144	1,85
	Шариковый радиальный легкой серии	60	110	22	~15	~7,5

Модули зубчатых колес 3 и 4 (см. рис. 2.21, a) одинаковы, но числа зубьев разные: $z_3 < z_4$. Передаточное число волновой передачи равно $u = \frac{z_3}{z_4 - z_3}$. При оптимальных значениях $(z_4 - z_3) = 2$ или 1 диапазон передаточных отношений в односту-

пенчатых волновых редукторах составляет от 80 до 300 (и более). Волновые передачи обладают высокой нагрузочной способностью благодаря многопарности зацепления: одновременно в зацеплении может находиться до 25—30% пар зубьев.

На рис. 2.21, в показан волновой редуктор с кулачковым генератором волн 2 и гибким тонкостенным колесом 3 сварной конструкции. На ведущем валу 1 находится кулачок, на котором установлен гибкий подшипник, сопряженный с гибким колесом, зубья которого в двух зонах входят в зацепление с зубьями жесткого колеса 4. Кулачок генератора волн находится на валу с радиальным зазором; передача движения осуществляется зубчатой муфтой, которая обеспечивает самоустановку генератора при работе редуктора. С гибкого колеса вращающий момент передается шлицами ведомому валу 5.

Мотор-редукторы

Мотор-редуктор — это агрегат, совмещающий в одном корпусе электродвигатель и редуктор. Последнее обстоятельство позволяет добиваться большой точности расположения вала редуктора относительно вала электродвигателя и уменьшает число деталей привода.

Чаще встречаются мотор-редукторы с зубчатыми передачами обыкновенными и планетарными.

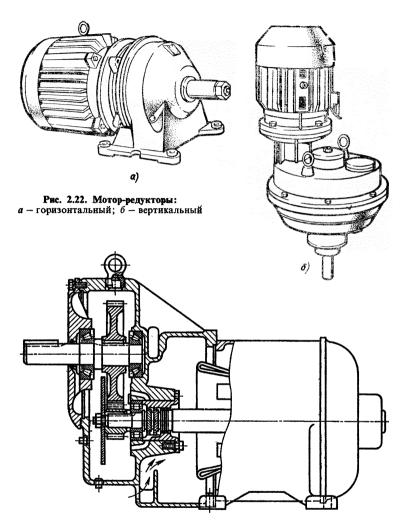


Рис. 2.23. Мотор-редуктор с одноступенчатой зубчатой цилиндрической передачей

На рис. 2.22 показаны общие виды мотор-редукторов. На рис. 2.23 изображен в разрезе горизонтальный мотор-редуктор с одноступенчатой зубчатой цилиндрической передачей. Показанный на рис. 2.22, б вертикальный мотор-редуктор имеет две ступени: первую — зубчатую цилиндрическую обыкновенную и вторую — планетарную.

17:1

глава III Зубчатые передачи

§ 3.1. ОБЩИЕ СВЕДЕНИЯ

Различают два вида зубчатых передач — закрытые и открытые. Эти передачи обычно разрабатывают в курсовых проектах учащиеся техникумов.

Закрытые, заключенные в отдельный корпус (например, редукторного типа) или встроенные в машину. Проектировочный расчет их выполняют на выносливость по контактным напряжениям во избежание усталостного выкрашивания рабочих поверхностей зубьев. Определив на основе этого расчета размеры колес и параметры зацепления, выполняют затем проверочный расчет на выносливость зубьев по напряжениям изгиба для предотвращения усталостного разрушения зубьев; обычно напряжения изгиба в зубьях, рассчитанных на контактную прочность, оказываются ниже допускаемых. Однако при выборе слишком большого суммарного числа зубьев колес (более 200) или применении термохимической обработки поверхностей зубьев до высокой твердости (HRC > 45) может возникнуть опасность излома зубьев. Для предотвращения этого размеры зубьев следует определять из расчета их на выносливость по напряжениям изгиба.

Открытые зубчатые передачи рассчитывают на выносливость по напряжениям изгиба с учетом износа зубьев в процессе эксплуатации. В этом случае нет необходимости проверять выносливость поверхностей зубьев по контактным напряжениям, так как абразивный износ поверхностей зубьев предотвращает выкрашивание их от переменных контактных напряжений.

Зубчатые передачи, работающие с большими кратковременными (пиковыми) перегрузками, необходимо проверять на отсутствие опасности хрупкого разрушения или пластических деформаций рабочих поверхностей зубьев от контактных напряжений, а также на отсутствие хрупкого излома или пластических деформаций при изгибе. Это относится равно как к закрытым, так и открытым передачам.

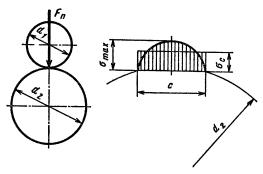


Рис. 3.1. Контактные напряжения в зоне соприкосновения цилиндров вдоль образующей:

Кратковременное действие пиковых нагрузок не оказывает влияния на поверхностную и общую усталостную прочность зубьев. Поэтому определение напряжений, вызываемых такими нагрузками, следует рассматривать как проверку зубьев на поверхностную и общую статическую прочность. Расчетные формулы имеют тот же вид, что и формулы для расчетов на усталостную прочность, но значения допускаемых напряжений, принимаемых в этих расчетах, различны.

Расчет закрытых зубчатых передач на выносливость рабочих поверхностей зубьев по контактным напряжениям основан на формуле Герца. Эта формула служит для определения максимального нормального напряжения в точках средней линии контактной полоски в зоне соприкосновения двух круговых цилиндров с параллельными образующими (рис. 3.1). При выводе формулы были приняты допущения: материал цилиндров идеально упругий, в точках контакта он находится в условиях объемного напряженного состояния— трехосного сжатия; наибольшее (по модулю) напряжение сжатия— главное напряжение σ_3 — принято обозначать σ_{max} ; при эллиптическом законе распределения давления по ширине площадки контакта

$$\sigma_{\max} = \frac{4q}{\pi c},\tag{3.1}$$

где q — нагрузка на единицу длины контактной линии; c — ширина контактной площадки, определяемая из выражения

$$c=3.04 \sqrt{\frac{q \rho_{\rm np} (1-v^2)}{E}}.$$

Подставив это значение в формулу (3.1), получим

$$\sigma_{\text{max}} = 0.418 \sqrt{\frac{qE}{\rho_{\text{np}} (1 - v^2)}}$$
 (3.2)

Здесь $\frac{1}{\rho_{np}}$ — приведенная кривизна цилиндров, $\frac{1}{\rho_{np}} = \frac{1}{\rho_1} + \frac{1}{\rho_2}$, где ρ_1 и ρ_2 — радиусы цилиндров; отсюда $\rho_{np} = \frac{\rho_1 \rho_2}{\rho_1 + \rho_2}$; ν — коэффициент Пуассона, принятый равным 0,3; E — модуль упругости материала цилиндров; если цилиндры изготовлены из разных материалов, то определяют приведенный модуль упругости

$$E = \frac{2E_1E_2}{E_1 + E_2}.$$

§ 3.2. РАСЧЕТ ЦИЛИНДРИЧЕСКИХ ЗУБЧАТЫХ КОЛЕС НА КОНТАКТНУЮ ВЫНОСЛИВОСТЬ

Для расчета передач с цилиндрическими зубчатыми колесами (рис. 3.2) на выносливость рабочих поверхностей зубьев по

контактным напряжениям пользуются формулой (3.2); максимальное нормальное напряжение σ_{max} принято обозначать σ_H ; индекс H (лат.) соответствует первой букве фамилии знаменитого физика Hertz a; нагрузка на единицу длины контактной линии зубьев

$$q=\frac{F_nK_H}{bk_{\varepsilon}},$$

где $F_n = \frac{F_t}{\cos \alpha_w \cos \beta}$ — нормальная сила в зацеплении; $F_t = \frac{2T_1}{d_1} = \frac{2T_2}{d_2}$ — окружная сила; α_w — угол зацепления; по ГОСТ 13755—81 он принят равным 20°*;

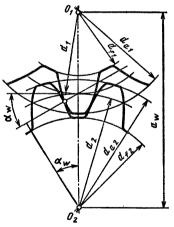


Рис. 3.2. Геометрия зубчатого эвольвентного занепления

^{*} В дальнейшем будем считать $\alpha_w \approx \sigma$, где α — делительный угол профиля или угол профиля исходного контура.

 β — угол наклона зуба по отношению к образующей делительного цилиндра; K_H — коэффициент, учитывающий динамическую нагрузку и неравномерность распределения нагрузки между зубьями и по ширине венца; b — ширина венца; k_ϵ — коэффициент степени перекрытия.

Приведенный радиус цилиндров р_{пр} следует заменить величиной приведенного радиуса эвольвентных профилей зубьев в полюсе зацепления; так как

$$\rho_1 = \frac{d_1 \sin \alpha}{2 \cos \beta}, \ \rho_2 = \frac{d_2 \sin \alpha}{2 \cos \beta}, \ \frac{d_2}{d_1} = u,$$

TO

$$\rho_{np} = \frac{d_2 \sin \alpha}{2 \cos \beta (u+1)}.$$

Подстановка приведенных значений величин в формулу (3.2) дает возможность выразить зависимость σ_H от параметров зубчатой передачи в виде

$$\sigma_{H} = \sqrt{\frac{E}{\pi (1 - v^{2})} \frac{2 \cos \beta}{\sin 2\alpha} \frac{1}{k_{\varepsilon}} \frac{2T_{2}K_{H}(u + 1)}{d_{2}^{2}b}}.$$
 (3.3)

Дальнейшие расчеты даны в соответствии с рекомендациями ГОСТ 21354—75. Допущенные в отдельных случаях незначительные отступления, практически не влияющие на величину конечного результата, имеют целью некоторое упрощение расчета.

Для практических расчетов по ГОСТ 21354-75 введены следующие условные обозначения:

 $Z_M = \sqrt{\frac{E}{\pi \, (1-\nu^2)}}$ — коэффициент, учитывающий механические свойства материала сопряженных зубчатых колес; его размерность соответствует размерности \sqrt{E} ;

 $Z_H = \sqrt{\frac{2\cos\beta}{\sin2\alpha_w}}$ — безразмерный коэффициент, учитывающий форму сопряженных поверхностей зубьев в полюсе зацепления;

 $Z_{\varepsilon} = \sqrt{\frac{1}{k_{\varepsilon}}}$ — безразмерный коэффициент, учитывающий суммарную длину контактных линий; для прямозубых колес $k_{\varepsilon} = \frac{3}{4 - \varepsilon_{\alpha}}$; для косозубых и шевронных $k_{\varepsilon} = \varepsilon_{\alpha}$, где ε_{α} — степень перекрытия.

С этими обозначениями формула (3.3) примет вид

$$\sigma_H = Z_M Z_H Z_{\varepsilon} \sqrt{\frac{2T_2 K_H (u+1)}{d_2^2 b}}.$$
 (3.4)

Все величины, входящие в эту формулу, должны быть выражены в соответствующих единицах. В ГОСТ 21354-75 допуцено отклонение от этого правила: момент выражен в $H \cdot M$, а d и b в мм, напряжение и модуль упругости в МПа (численно соответствует MH/M^2).

В дальнейнем, следуя правилу теории размерностей, будем выражать момент в $\mathbf{H} \cdot \mathbf{m} \mathbf{m}$, d и b в мм, σ_H и E в МПа (что численно соответствует $\mathbf{H}/\mathbf{m} \mathbf{m}^2$).

Для стали принимают: $E = 2,15 \cdot 10^5$ МПа; коэффициент Пуассона v = 0,3. При этих значениях коэффициент

$$Z_M = \sqrt{\frac{E}{\pi (1 - v^2)}} = \sqrt{\frac{2,15 \cdot 10^5}{3,14 (1 - 0,3^2)}} = 275 \text{ H}^{\frac{1}{2}}/\text{MM}.$$

Численные значения коэффициента Z_H :

для прямозубых колес при $\alpha=20^\circ$, $\beta=0$ $Z_H=1,76$; для косозубых колес при $\alpha=20^\circ$, $\beta=8\div15^\circ$ $Z_H=1,74\div1,71$;

для шевронных колес $Z_H = 1,57$.

Средние значения коэффициента Z_{ε} :

для прямозубых передач при $\alpha = 20^{\circ} Z_{\epsilon} = 0.9$; для косозубых передач $Z_{\epsilon} = 0.8$.

После подстановки указанных значений коэффициентов в формулу (3.4) и замены в ней d_2 через межосевое расстояние a_w

 $d_2 = \frac{2a_w u}{u+1}$

получим формулы для проверочного расчета: прямозубых передач

$$\sigma_{H} = \frac{310}{a_{w}} \sqrt{\frac{T_{2}K_{H}(u+1)^{3}}{bu^{2}}} \leq [\sigma_{H}];$$
 (3.5)

косозубых передач

$$\sigma_H = \frac{270}{a_w} \sqrt{\frac{T_2 K_H (u+1)^3}{b u^2}} \leqslant [\sigma_H].$$
 (3.6)

Выражая в этих формулах величину b через a_w с помощью коэффициента ширины зубчатого венца $\psi_{ba}=\frac{b}{a_w}$, получим формулу для проектировочного расчета a_w , мм

$$a_{w} = K_{a}(u+1) \sqrt[3]{\frac{T_{2}K_{H\beta}}{[\sigma_{H}]^{2}u^{2}\psi_{ba}}}.$$
 (3.7)

Для прямозубых передач $K_a=49,5$; для косозубых и шевронных передач $K_a\doteq 43,0$.

Коэффициент $K_H = K_{H\alpha}K_{H\beta}K_{H\nu}$, где $K_{H\alpha}$ — коэффициент, учитывающий неравномерность распределения нагрузки между зубьями; для прямозубых колес принимают $K_{H\alpha} = 1,0$; для косозубых колес в зависимости от окружной скорости v: при $v = 10 \div 20$ м/с и 7-й степени точности $K_{H\alpha} = 1,0 \div 1,1$, при v до 10 м/с и 8-й степени точности $K_{H\alpha} = 1,05 \div 1,15$; $K_{H\beta}$ — коэффициент, учитывающий неравномерность распределения нагрузки по ширине венца. При проектировании закрытых зубчатых передач редукторного типа принимают значения $K_{H\beta}$ по табл. 3.1.

3.1. Ориентировочные значения коэффициента $K_{H\beta}$ для зубчатых передач редукторов, работающих при переменной нагрузке

Расположенне зубчатых колес	Твердость НВ поверхностей зубьев			
относительно опор	≤350	> 350		
Симметричное Несимметричное Консольное	1,00 - 1,15 1,10 - 1,25 1,20 - 1,35	1,05 – 1,25 1,15 – 1,35 1,25 – 1,45		

Меньшие значения принимают для передач с отношением $\Psi_{bd} = b/d_1 = 0.4$; при увеличении Ψ_{bd} до 0,6 для консольно расположенных колес и Ψ_{bd} до 0,8 при несимметричном расположении их следует принимать большие из указанных в таблице значений $K_{H\beta}$. При постоянной нагрузке $K_{H\beta} = 1$.

Определение ψ_{bd} см. формулу (3.8).

Динамический коэффициент K_{Hv} определяют в зависимости от окружной скорости v колес и степени точности их изготовления.

Для прямозубых колес при v до 5 м/с следует назначать 8-ю степень точности по ГОСТ 1643-81; при этом $K_{Hv}==1,05\div1,10$.

Для косозубых колес при v до 10 м/с назначают также 8-ю степень точности и принимают $K_{Hv}=1,0\div1,05$. При v свыше 10 до 20 м/с и 7-й степени точности $K_{Hv}=1,05\div1,1$. Меньшие из указанных значений относятся к колесам с твердостью поверхностей зубьев $HB\leqslant350$, большие — при твердости HB>350.

Коэффициенты $K_{H\alpha}$ и $K_{H\nu}$ могут быть определены только тогда, когда известны размеры передачи (надо знать скорость v). Поэтому при проектировочных расчетах по формуле (3.7) предварительно используют один коэффициент $K_{H\beta}$, учитывающий неравномерность распределения нагрузки по ширине венца (см. табл. 3.1).

При проектировании редукторов обычно задаются величиной $\psi_{ba} = b/a$; для прямозубых передач принимают $\psi_{ba} = 0.125 \div 0.25$; для косозубых $\psi_{ba} = 0.25 \div 0.40$; для шевронных $\psi_{ba} = 0.5 \div 1.0$. Чтобы вычислить ψ_{bd} по выбранному значению ψ_{ba} , следует воспользоваться равенством $d_1 = \frac{2a}{(u+1)}$; тогда

$$\psi_{bd} = \frac{b}{d_1} = \frac{b(u+1)}{2a} = 0.5\psi_{ba}(u+1). \tag{3.8}$$

Допускаемое контактное напряжение определяют при проектировочном расчете по формуле

$$\left[\sigma_{H}\right] = \frac{\sigma_{H \lim b} K_{HL}}{\left[S_{H}\right]}.$$
(3.9)

Здесь $\sigma_{H \, \text{lim} \, b}$ — предел контактной выносливости при базовом числе циклов (значения $\sigma_{H \, \text{lim} \, b}$ указаны в табл. 3.2); K_{HL} — коэффициент долговечности; если число циклов нагружения каждого зуба колеса больше базового, то принимают $K_{HL}=1$. Именно такой случай типичен для курсовых проектов, выполняемых в техникумах.

В других условиях, когда эквивалентное число циклов перемены напряжений N_{HE} меньше базового N_{HO} , то

$$K_{HL} = \sqrt[6]{\frac{N_{HO}}{N_{HE}}}.$$

Если при расчете колес из нормализованной или улучшенной стали K_{HL} полу іается больше 2,6, то принимают $K_{HL}=2,6$; для колес из закаленной стали $K_{HL}\leqslant 1,8$; $[S_H]$ — коэффициент безопасности; для колес из нормализованной и улучшенной стали, а также при объемной закалке принимают $[S_H]=1,1\div 1,2$; при поверхностном упрочнении зубьев $[S_H]=1,2\div 1,3$.

Данные для выбора материалов шестерни и колеса приведены в табл. 3.3. Рекомендуется назначать для шестерни и колеса сталь одной и той же марки, но обеспечивать соответствующей термической обработкой твердость поверхности зубьев шестерни на 20—30 единиц Бринелля выше, чем колеса.

3.2. Предел контактной выносливости при базовом числе циклов

Средняя твердость поверхностей зубьев	Сталь	σ _{Hlimb} , ΜΠα
<i>HB</i> < 350	Углеродистая и легирован-	2 HB + 70
HRC 38-50	ная	18 <i>HRC</i> + + 150
HRC 40-50		17 <i>HRC</i> + + 200
HRC > 56	Легированная	23 <i>HRC</i>
HV 550- 750		1050
	твердость поверхностей зубьев HB < 350 HRC 38 - 50 HRC 40 - 50 HRC > 56 HV 550 -	твердость поверхностей зубьев HB < 350 Углеродистая и легированная HRC 38 — 50 HRC 40 — 50 HRC > 56 Легированная

Примечание. Базовое число циклов N_{HO} определяют в зависимости от твердости стали, при твердости HB < 200 принимают $N_{HO} = 10^7$; при твердости HB 200 — 500 зиачение N_{HO} возрастает по линейному закону от 10^7 до $6\cdot 10^7$.

3.3. Механические свойства сталей, применяемых для изготовления зубчатых колес

Марка стали	Диаметр заготовки, мм	Предел проч- ности о _в , МПа	Предел текучести о_т, МПа	Твердость <i>НВ</i> (средняя)	Термообработка
45	100 500	570	290	190	Нормализация
45	До 90 90-120 Св. 120	780 730 690	440 390 340	230 210 200	
30ХГС	До 140 Св. 140	1020 930	840 740	260 250	
40X	До 120 120—160 Св. 160	930 880 830	690 590 540	270 260 245	Улучшение
40XH	До 150 150—180 Св. 180	930 880 835	690 590 540	280 265 250	

` Марка стали	Диаметр заготовки, мм	Преде проч ності σ _в , М	- И	Предел текучести о _т , МПа	Твердость <i>НВ</i> (средняя)	Термообработка
40Л 45Л	_	520 540		290 310	160 180	Нормализация
35ГЛ 35ХГСЛ	_	590 790		340 590	190 220	Улучшение
Марка стали			7	Гвердость <i>HRC</i>	Терг	мообработка
30XFC, 35XM, 40X, 40XH 12XH3A, 18X2H4MA, 20XM 20XFM, 25XFT, 30XFT, 35X 30X2MЮA, 38X2Ю, 40X 40X, 40XH, 35XM				45-55 50-63 56-63 56-63 45-63	Нитроце Азотиро	остная закалка

Для непрямозубых колес расчетное допускаемое контактное напряжение

$$[\sigma_H] = 0.45 ([\sigma_{H1}] + [\sigma_{H2}]),$$
 (3.10)

где $[\sigma_{H1}]$ и $[\sigma_{H2}]$ — допускаемые контактные напряжения соответственно для шестерни и колеса; после определения этих величин следует проверить выполнение условия

$$[\sigma_H] \leq 1,23 [\sigma_{H \min}],$$

где $[\sigma_{H \min}]$, как правило, равно $[\sigma_{H2}]$.

Последовательность проектировочного расчета

1. Определяют величины, входящие в правую часть формулы (3.7), соответственно для прямозубых или косозубых передач; при этом передаваемый момент T_2 входит в число заданных (исходных) величин; коэффициент $K_{H\beta}$ и допускаемое напряжение $[\sigma_H]$ находят по приведенным выше данным; передаточное число u равно отношению чисел зубьев колеса и шестерни; так как z_1 и z_2 в начале расчета еще не установлены, то принимают

$$u=\frac{z_2}{z_1}=\frac{\omega_1}{\omega_2}=\frac{n_1}{n_2},$$

где угловые скорости ω_1 , ω_2 или частоты вращения n_1 , n_2 обусловлены заданием. Если поставлено условие придержи-

ваться стандартных значений u, то следует округлить вычисленное значение u до величины по ГОСТ 2185-66:

1-й ряд: 1; 1,25; 1,6; 2,0; 2,5; 3,15; 4,0; 5,0; 6,3; 8,0; 10,0; 2-й ряд: 1,12; 1,4; 1,8; 2,24; 2,8; 3,55; 4,5; 5,6; 7,1; 9,0; 11,2.

Первый ряд следует предпочитать второму.

Стандартные значения передаточного числа следует рассматривать как номинальные. В дальнейшем при установлении значений z_1 и z_2 уточняют фактическую величину u.

Коэффициенты ширины венца ψ_{ba} рекомендуется выбирать из ряда по ГОСТ 2185-66: 0,10; 0,125; 0,16; 0,25; 0,315; 0,40; 0,50; 0,63; 0.80: 1,00: 1,25.

Для прямозубых колес рекомендуется ограничивать $\psi_{ba} \leq 0,25$; для косозубых предпочтительно принимать $\psi_{ba} = 0,25 \div 0,63$, проверяя (при $\psi_{ba} < 0,4$) выполнение условия

$$\psi_{ba} \geqslant \frac{2.5m_n}{a_n \sin \beta}.$$

2. Определяют межосевое расстояние a_w по формуле (3.7) и округляют его до ближайшего значения по ГОСТ 2185-66 (в мм):

1-й ряд: 40, 50, 63, 80, 100, 125, 160, 200, 250, 315, 400, 500, 630, 800, 1000, 1250, 1600, 2000, 2500;

2-й ряд: 71, 90, 112, 140, 180, 224, 280, 355, 450, 560, 710, 900, 1120, 1400, 1800, 2240.

Первый ряд следует предпочитать второму.

3. Выбирают модуль в интервале $(0.01-0.02) a_w$ и выравнивают его по ГОСТ 9563-60* (в мм):

1-й ряд: 1; 1,25; 2; 2,5; 3; 4; 6; 8; 10; 12; 16; 20.

2-й ряд: 1,375; 1,75; 2,25; 2,75; 3,5; 4,5; 7; 9; 11; 14; 18; 22. Первый ряд следует предпочитать второму.

Для косозубых колес стандартным модулем считают нормальный m_n . Для шевронных колес стандартным модулем может быть как нормальный модуль m_n , так и окружной m_t .

4. Определяют суммарное число зубьев $z_{\Sigma} = z_1 + z_2$.

Для колес со стандартным *окружным* модулем (прямозубых - и шевронных)

$$z_{\Sigma} = \frac{2a_{w}}{m_{t}}.\tag{3.11}$$

Для косозубых и шевронных со стандартным *нормальным* модулем

$$z_{\Sigma} = \frac{2a_{w}\cos\beta}{m_{-}}. (3.12)$$

Угол наклона линии зуба β принимают для косозубых колес в интервале $\beta = 8 \div 15^{\circ}$, для шевронных $\beta = 25 \div 40^{\circ}$ (до 45°).

5. Определяют числа зубьев шестерни и колеса:

$$z_{1} = \frac{z_{\Sigma}}{u+1};$$

$$z_{2} = z_{\Sigma} - z_{1}.$$
(3.13)

По округленным значениям z_1 и z_2 уточняют передаточное число

$$u=\frac{z_2}{z_1}.$$

Расхождение с принятым ранее номинальным передаточным отношением не должно превышать 2,5 % при $u \le 4,5$ и 4 % при u > 4,5.

После всех указанных округлений необходимо проверить межосевое расстояние: для прямозубых и шевронных колес со стандартным окружным модулем

$$a_w = 0.5 (z_1 + z_2) m_t;$$
 (3.14)

обычно такая проверка подтверждает отсутствие расхождения; для косозубых и шевронных колес с нормальным стандартным модулем

$$a_w = 0.5 (z_1 + z_2) \frac{m_n}{\cos \beta}.$$
 (3.15)

При проверке может обнаружиться несоответствие полученного результата с ранее принятым значением a_w по стандарту. В этом случае надо устранить расхождение изменением угла β :

$$\cos \beta = 0.5 (z_1 + z_2) \frac{m_n}{a_w}. \tag{3.16}$$

Вычисление надо выполнять с точностью до пяти значащих цифр. Затем рекомендуется проверить расчеты, определив

$$d_1 = z_1 \frac{m_n}{\cos \beta}; \ d_2 = z_2 \frac{m_n}{\cos \beta} \tag{3.17}$$

с точностью до сотых долей миллиметра, и убедиться, что принятое ранее

$$a_w = \frac{d_1 + d_2}{2}.$$

6. Возможен иной вариант расчета: задаются числом зубьев шестерни; оно должно быть не меньше z_{\min} по условию отсутствия подрезания; для прямозубых колес

$$z_{\min} = 17;$$

для косозубых и шевронных

$$z_{\min} = 17 \cos^3 \beta$$
.

Затем определяют

$$m_t = \frac{2a_w}{z_1 + z_2}$$

или

$$m_{\rm n} = \frac{2a_{\rm w}\cos\beta}{z_1 + z_2},\tag{3.18}$$

округляют полученные значения и далее ведут расчет так же, как описано выше.

После установления окончательных размеров шестерни и колеса необходимо проверить величину расчетных контактных напряжений [см. формулу (3.4), а также формулы (3.5) и (3.6)], так как после округлений и уточнений размеров передачи коэффициенты Z_M , Z_L , Z_L и K_H могут быть выражены точнее, чем это было принято в предварительном проектировочном расчете.

Коэффициент Z_M для стальных колес был определен выше

 $Z_M = 275 \; rac{ ext{H}^{rac{1}{2}}}{ ext{мм}}. \;$ Подстановка этого значения Z_M в формулу (3.4) и

значения $d_2 = \frac{2a_w u}{u+1}$ приводит ее к виду

$$\sigma_H = 195 \frac{Z_H Z_{\varepsilon}}{a_w} \sqrt{\frac{T_2 K_H}{b u^2} (u+1)^3}.$$
 (3.19)

Значения величин, входящих в эту формулу, и единицы их измерения были указаны в пояснениях к формуле (3.4). Но так как в предварительных расчетах коэффициенты Z_{ϵ} и K_H определялись ориентировочно, то в проверочных расчетах их необ ходимо уточнить:

для прямозубых передач

$$Z_{\varepsilon}=\sqrt{\frac{4-\varepsilon_{\alpha}}{3}};$$

3.4. Значения коэффициента $K_{H\alpha}$ для косозубых и шевроиных передач

		Окруж	ная скорость	v, м/с	
Степень точности	до 1	5	10	15	20
6	1	1,02	1,03	1,04	1,05
7	1,02	1,05	1,07	1,10	1,12
8	1,06	1,09	1,13	_	_
9	1,1	1,16	_	_	_

3.5. Значения коэффициента K_{HB}

_		Твер	дость пове	рхности зу	бьев	
$\psi_{bd} = \frac{b}{d}$		<i>HB</i> ≤ 350		HB > 350		
d_1	I	II	Ш	I.	II	III
0,4	1,15	1,04	1,0	1,33	1,08	1,02
0,6	1,24	1,06	1,02	1,50	1,14	1,04
0,8	1,30	1,08	1,03	_	1,21	1,06
1,0	<u> </u>	1,11	1,04	_	1,29	1,09
1,2	l –	1,15	1,05	_	1,36	1,12
1,4	l –	1,18	1,07	_	_	1,16
1,6	l –	1,22	1,09	_	_	1,21
1,8	-	1,25	1,11	_	_	_
2,0		1,30	1,14	-	_	-

Примечание. Данные, приведенные в столбце I, относятся к передачам с консольным расположением зубчатого колеса; $II - \kappa$ передачам с несимметричным расположением колес по отношению к опорам; $III - \kappa$ передачам с симметричным расположением.

для косозубых передач

$$Z_{\varepsilon} = \sqrt{\frac{1}{\varepsilon_{\alpha}}},$$

где торцовый коэффициент перекрытия

$$\varepsilon_{\alpha} = \left[1,88 - 3,2\left(\frac{1}{z_1} + \frac{1}{z_2}\right)\right] \cos \beta.$$

Для уточнения величины коэффициента $K_H = K_{H\alpha}K_{H\beta}K_{H\nu}$ служат табл. 3.4, 3.5 и 3.6.

При проверочном расчете по контактным напряжениям можно внести уточнения, введя в формулу (3.9) ряд дополни тельных множителей:

3.6. Значения коэффициента K_{H_0}

		Окружная скорость v, м/с					
	Твердость <i>НВ</i> поверхности зубьев	до 5	10	15	20		
Передача		Степень точности					
			8		7		
Прямозубая	≤ 350	1,05	_	-	_		
	> 350	1,10	-				
Косозубая и шев-	≤ 350	1,0	1,01	1,02	1,05		
ронная	> 350	1,0	1,05	1,07	1,10		

$$\left[\sigma_{H}\right] = \frac{\sigma_{H \lim b} K_{HL} Z_{R} Z_{v} K_{L} K_{xH}}{\left[S_{H}\right]}.$$
 (3.20)

Здесь $\sigma_{H \text{ lim } b}$ и K_{HL} имеют те же значения, что и в формуле (3.9); те же значения имеет коэффициент безопасности $[S_H]$.

Коэффициент Z_R учитывает влияние шероховатости сопряженных поверхностей: $Z_R=1,0$ при $Ra=0,63\div1,25$ мкм (боковые поверхности зубьев зубчатых колес 7-й и 6-й степени точности); $Z_R=0,95$ при $Ra=1,25\div2,5$ мкм (боковые поверхности зубьев зубчатых колес 7-й степени точности); $Z_R=0,9$ при $Rz=10\div20$ мкм (боковые поверхности зубьев зубчатых колес 8-й и 9-й степени точности).

Коэффициент Z_{ν} , учитывающий влияние окружной скорости, определяют в точных расчетах по графикам и эмпирическим зависимостям, приведенным в ГОСТ 21354—75; при курсовом проектировании можно принимать достаточно точные средние значения:

Твердость <i>НВ</i>		Коэффициент	Z_v при v , м/с	
поверхности зубьев	5	10	15	20
≤ 350 > 350	1,0 1,0	1,04 1,02	1,07 1,03	1,10 1,05

Коэффициент K_L , учитывающий влияние смазочного материала для закрытых передач, принимают равным единице.

Коэффициент K_{xH} , учитывающий влияние размеров колеса, принимают равным единице для колес диаметром $d_2 \leqslant 700$ мм; при большем диаметре

$$K_{xH} = \sqrt{1,07 - d_2 10^{-4}}.$$

Для закрытых передач, работающих со скоростями до 5-10 м/с и имеющих $d_2 \le 700$ мм, произведение коэффициентов $Z_R Z_v K_L K_{xH}$ оказывается близким к единице. Поэтому в этих случаях можно и при проверочном расчете принимать значение $[\sigma_H]$, полученное по формуле (3.9).

Передачи, работающие с кратковременными перегрузками (пиковыми нагрузками), следует проверять на отсутствие пластических деформаций или хрупкого разрушения рабочих поверхностей зубьев; максимальное напряжение, возникающее при пиковой нагрузке, определяют по формуле

$$\sigma_{\max} = \sigma_H \sqrt{\frac{T_{2 \max}}{T_2}}; \qquad (3.21)$$

оно не должно превышать предельного допускаемого напряжения $[\sigma_{H\,\mathrm{np}}]$, принимаемого для стальных колес при твердости $HB \leqslant 350$ равным $3,1\sigma_{\mathrm{T}}$ и при HB > 350 равным 41,3HRG; в формуле (3.21) σ_{H} — расчетное напряжение в поверхностном слое зубьев, определяемое по формуле (3.19); $T_{2\,\mathrm{max}}$ и T_{2} — максимальный (пиковый) и номинальный моменты на валу колеса.

§ 3.3. РАСЧЕТ ЗУБЬЕВ ЦИЛИНДРИЧЕСКИХ КОЛЕС НА ВЫНОСЛИВОСТЬ ПРИ ИЗГИБЕ

В расчетах цилиндрических прямозубых колес зуб рассматривают как балку, жестко защемленную одним концом. Силу считают приложенной к вершине зуба по нормали к его поверхности; силу трения не учитывают. Расчетная схема нагружения зуба представлена на рис. 3.3.

Формула для проверочного расчета зубьев на выносливость по напряжениям изгиба имеет вид (см. ГОСТ 21354—75)

$$\sigma_F = \frac{F_t K_F Y_F}{bm} \leqslant [\sigma_F]. \tag{3.22}$$

Чтобы вывести формулу для проектировочного расчета на изгиб (такие случаи встречаются в курсовых проектах редко), вводят коэффициент $\psi_{bm} = b/m$, заменяют $F_t = \frac{2T}{mz}$, $b = \psi_{bm}m$ и получают на основании формулы (3.22)

$$m = \sqrt[3]{\frac{2T_1K_FY_F}{[\sigma_F]\psi_{bm}z_1}}.$$
 (3.23)

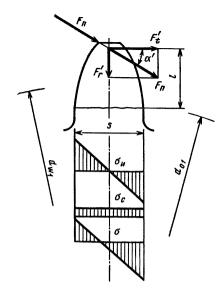


Рис. 3.3. Расчетная схема нагружения зуба прямозубого цилиндрического колеса

Здесь моменты $T(\mathbf{B} \ \mathbf{H} \cdot \mathbf{M}\mathbf{M})$ и числа зубьев z могут быть взяты по шестерне или по колесу, так как соответственно

$$\frac{T_1}{z_1} = \frac{T_2}{z_2}.$$

Расчет следует вести для зубьев того из колес, для которого отношение $\left[\frac{\sigma_F}{Y_F}\right]$ меньше; Y_F – коэффициент, учитывающий форму зуба. При одинаковых материалах и их

механических характеристиках Y_F больше для шестерни, поэтому в этих случаях именно для зубьев шестерни и ведуг расчет.

Значения коэффициента Y_F даны в ГОСТ 21354—75 в виде графиков с учетом коэффициента смещения. Для зубчатых колес, выполненных без смещения, Y_F имеет следующие значения:

Коэффициент нагрузки K_F представляет собой произведение двух коэффициентов: $K_{F\beta}$, учитывающего неравномерность распределения нагрузки по длине зуба (коэффициент концентрации нагрузки), и $K_{F\nu}$, учитывающего динамическое действие нагрузки (коэффициент динамичности).

Значения коэффициента $K_{F\beta}$ приведены в табл. 3.7, составленной на основании графиков ГОСТ 21354-75 с некоторыми упрощениями.

Значения коэффициента динамичности K_{Fo} приведены в табл. 3.8.

В большинстве случаев напряжения изгиба зубьев изменяются во времени по прерывистому отнулевому циклу, поэтому допускаемые напряжения определяются в зависимости

3.7. Значения коэффициента $K_{F\beta}$

		T	вердость	рабочих	поверхно	стей зубь	ев	
$\psi_{bd} = b/d_{w1}$		HB :	≤ 350			HB>	- 350	
- 0/a _{w1}	I	11	III	IV	I	II	III	IV
0,2	1,00	1,04	1,18	1,10	1,03	1,05	1,35	1,20
0,4	1,03	1,07	1,37	1,21	1,07	1,10	1,70	1,45
0,6	1,05	1,12	1,62	1,40	1,09	1,18	_	1,72
0,8	1,08	1,17	_	1,59	1,13	1,28	_	-
1,0	1,10	1,23	_		1,20	1,40		_
1,2	1,13	1,30	-	_	1,30	1,53	_	-
1,4	1,19	1,38	-	_	1,40	-	-	_
1,6	1,25	1,45	_	-	_	-	_	_
1,8	1,32	1,53	_	_		-		_

Примечание. Данные в столбце I относятся к симметричному расположению зубчатых колес относительно опор; II—к несимметричному; III—к консольному при установке валов на шариковых подшипниках; IV—то же, но при установке валов на роликовых подшипниках.

3.8. Орнентировочные значения коэффициента K_{F_n}

	Твердость	Окр	ужная скорость v,	м/с
Степень точности	НВ рабочей поверхности зубьев	3	3-8	8-12,5
6	≤ 350	1/1	1,2/1	1,3/1,1
	> 350	1/1	1,15/1	1,25/1
7	≤ 350	1,15/1	1,35/1	1,45/1,2
	> 350	1,15/1	1,25/1	1,35/1,1
8	≤ 350	1,25/1,1	1,45/1,3	-/1,4
	> 350	1,2/1,1	1,35/1,2	-/1,3

Примечание. В числителе указаны значения $K_{F_{\mathcal{D}}}$ для прямозубых передач, в знаменателе — для косозубых.

от $\sigma^0_{F \lim b}$ — предела выносливости (при отнулевом цикле), соответствующего базовому числу циклов.

Методику выбора допускаемых напряжений, изложенную в ГОСТ 21354—75, для учебных целей можно существенно упростить и определять допускаемое напряжение по формуле

$$[\sigma_F] = \frac{\sigma_{F \text{lim}b}^0}{[S_F]}.$$
 (3.24)

Коэффициент безопасности $[S_F]$ определяют как произведе ние двух коэффициентов: $[S_F] = [S_F]'[S_F]''$.

Первый коэффициент $[S_F]'$ учитывает нестабильность свойств материала зубчатых колес; его значения приведены в

Марка стали	Термическая или термохими- ческая обработка
40, 45, 50, 40X, 40XH, 40XΦA	Нормализация, улучшение
40X, 40XH, 40XΦA	Объемная закалка
40XH, 40XH2MA	Закалка при нагреве ТВЧ
20XH, 20XH2M, 12XH2, 12XH3A	Цементация
Стали, содержащие алюминий	Азотирование

табл. 3.9 при вероятности неразрушения 99 %. Таким образом, в этом коэффициенте отражена и степень ответственности зубчатой передачи; при вероятности неразрушения большей, чем 99 %, значения $[S_F]$ существенно возрастают.

Второй множитель $[S_F]''$ учитьвает способ получения заготовки зубчатого колеса: для поковок и штамповок $[S_F]'' = 1,0$; для проката $[S_F]'' = 1,15$; для литых заготовок $[S_F]'' = 1,3$.

Сведения о пределах выносливости σ_{Flimb}^0 приведены в табл. 3.9; в дополнение к ней следует пользоваться также табл. 3.3, в которой приведены механические свойства сталей в зависимости не только от вида термической обработки, но и от размеров заготовки.

Для реверсируемых передач, в которых зубья работают попеременно обеими сторонами, допускаемое напряжение следует снижать на 25 %.

При проверочных расчетах ГОСТ предлагает выбирать допускаемое напряжение по зависимости

$$\left[\sigma_F\right] = \frac{\sigma_{F \lim}}{\left[S_F\right]} Y_S Y_R K_{xF},$$

где σ_{Flim} — предел выносливости при эквивалентном числе циклов;

$$\sigma_{F \lim} = \sigma_{F \lim b}^{0} K_{Fq} K_{Fd} K_{Fc} K_{Fb}$$

где K_{Fg} — коэффициент, учитывающий влияние шлифования переходной поверхности зубьев; при отсутствии шлифования $K_{Fg} = 1$; K_{Fd} — коэффициент, учитывающий влияние деформационного упрочнения или электрохимической обработки пере-

цикле изгиба $\sigma_{F \lim b}^0$ и коэффициента безопасности $[S_F]'$

Твердост	ъ зубьев		
на поверхности	в сердцевине	σ _{F lim b} , ΜΠα	$[S_F]'$
HB 18	0-350	1,8 <i>HB</i>	1,75
HRC -	45 – 55	500 – 550	1,8
HRC 48-58	HRC 25-35	700	1,75
HRC 57-63	-	950	1,55
HV 700-950	HRC 24-40	300 + 1,2 HRC сердцевины	1,75

ходной поверхности; при отсутствии такого упрочнения $K_{Fd}=1$; K_{Fc} — коэффициент, учитывающий влияние двустороннего приложения нагрузки. При одностороннем приложении нагрузки $K_{Fc}=1$; K_{FL} — коэффициент долговечности, зависящий от соотношения базового и эквивалентного чисел циклов. Поскольку для всех сталей ГОСТ принимает базовое число циклов $N_{FO}=4\cdot10^6$, а при эквивалентном числе циклов, большем базового, коэффициент $K_{FL}=1,0$, то при учебном проектировании передач, имеющих $N_{F_{NR}}>N_{FO}$, этот коэффициент можно принять равным единице. Y_S — коэффициент, учитывающий градиент напряжений, зависящий от модуля; при встречающихся в учебном проектировании значениях модуля от 1 до

3.10. Основиые параметры цилиндрических зубчатых передач, выполненных без смещения (см. рис. 3.2)

Параметры	Шестерня	Колесо			
Параметры	Расчетные формулы				
Делительный диаметр	$d_1 = \frac{m_n z_1}{\cos \beta}$	$d_2 = \frac{m_n z_2}{\cos \beta}$			
Диаметр окружности вершин зубьев	$d_{a1}=d_1+2m_n$	$d_{a2}=d_2+2m_n$			
Диаметр окружности впадин зубьев	$d_{f1}=d_1-2,5m_n$	$d_{f2} = d_2 - 2,5m_n$			
Межосевое расстояние	$a_{w}=\frac{d_1+d_2}{2}=0$	$0.5 \frac{m_n}{\cos \beta} (z_1 + z_2)$			

8 мм этот коэффициент убывает от 1,1 до 0,92; Y_R — коэффициент, учитывающий шероховатость переходной поверхности; он отличен от единицы лишь в случае полирования переходной поверхности; K_{xF} — коэффициент, учитывающий размеры зубчатого колеса; при $d_a \le 300$ мм $K_{xF} = 1,0$; при $d_a = 800$ мм $K_{xF} = 0,95$.

Из анализа коэффициентов, входящих в формулы ГОСТа для определения $[\sigma_F]$ и σ_{Flim} , следует, что численные значения этих коэффициентов для передач, рассчитываемых в курсовых проектах техникумов, весьма близки к единице. Поэтому в учебных целях рационально пользоваться при определении допускаемого напряжения формулой (3.24).

Формулы для геометрического расчета цилиндрических зубчатых колес приведены в табл. 3.10.

Особенности расчета косозубых и шевронных передач

Несущая способность косозубых и шевронных колес выше, чем прямозубых. Повышение выносливости зубьев отражено в формуле для определения расчетных напряжений двумя дополнительными коэффициентами, не встречающимися в формуле (3.22) для прямозубых колес.

Для проверочного расчета косых зубьев служит формула

$$\sigma_F = \frac{F_t K_F Y_F Y_{\beta} K_{F\alpha}}{b m_n} \leq [\sigma_F].$$
 (3.25)

Здесь коэффициент Y_F имеет то же значение, что и в формуле (3.22), с той, однако, разницей, что его следует выбирать по эквивалентному числу зубьев

$$z_v = \frac{z}{\cos^3 \beta}.$$

Коэффициент $Y_{\rm B}$ введен для компенсации погрешности, возникающей из-за применения той же расчетной схемы зуба, что и в случае прямых зубьев. Этот коэффициент определяют по формуле

$$Y_{\beta}=1-\frac{\beta^{\circ}}{140},$$

где β° — угол наклона делительной линии зуба.

Коэффициент $K_{F\alpha}$ учитывает неравномерность распределения

нагрузки между зубьями. Для узких зубчатых колес, у которых коэффициент осевого перекрытия

$$\epsilon_{\beta} = \frac{b \operatorname{tg} \beta}{\pi m_{t}} < 1,$$

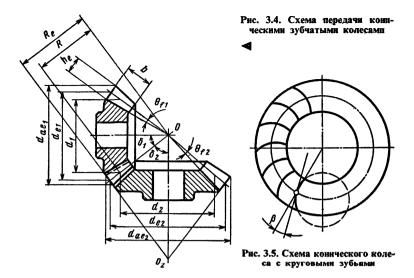
коэффициент $K_{F\alpha}=1,0.$ При $\epsilon_{\beta}\geqslant 1$ этот коэффициент определяют по формуле

$$K_{F\alpha}=\frac{4+(\varepsilon_{\alpha}-1)(n-5)}{4\varepsilon_{\alpha}},$$

где ε_{α} — коэффициент торцового перекрытия; n — степень точности зубчатых колес. При учебном проектировании можно принимать среднее значение $\varepsilon_{\alpha}=1,5$ и степень точности 8-ю; тогда $K_{F\alpha}=0,92$; b — ширина венца того зубчатого колеса, зубья которого проверяют на изгиб.

При очень вы сокой поверхностной твердости зубьев и большом суммарном числе их ($z_{\Sigma} > 200$) может возникнуть необходимость в проектировочном расчете зубьев на изгиб и определении модуля m_n . Из формулы (3.25) после соответствующих преобразований получают требующуюся зависимость

$$m_n = \sqrt[3]{\frac{2TK_F K_{F\alpha} Y_F Y_{\beta} \cos \beta}{\psi_{bm} z \left[\sigma_F\right]}}.$$
 (3.26)


Здесь значения T/z можно брать как по шестерне, так и по колесу. Коэффициент $\psi_{bm} = b/m_n$. Рассчитывать следует то зубчатое колесо, для которого отношение $\lceil \sigma_F \rceil/Y_F$ меньше.

§ 3.4. РАСЧЕТ КОНИЧЕСКИХ ЗУБЧАТЫХ КОЛЕС

Хотя расчет конических зубчатых передач ГОСТом еще не регламентирован, тем не менее целесообразно выполнять его, ориентируясь на зависимости, приведенные выше для цилиндрических зубчатых колес.

На основании формул (3.4) и (3.5) с учетом особенности геометрии конических зубчатых колес (рис. 3.4) после соответствующих преобразований получают формулу для проверочного расчета конических прямозубых колес на контактную прочность:

$$\sigma_{H} = \frac{335}{R_{e} - 0.5b} \sqrt{\frac{T_{2}K_{H}\sqrt{(u^{2} + 1)^{3}}}{bu^{2}}} \leq [\sigma_{H}].$$
 (3.27)

При расчете по среднему конусному расстоянию $R=R_e-0.5\dot{b}$ формула (3.27) принимает вид

$$\sigma_H = \frac{335}{R} \sqrt{\frac{T_2 K_H \sqrt{(u^2 + 1)^3}}{bu^2}} \leqslant [\sigma_H].$$

Здесь R_e и R — внешнее и среднее конусные расстояния, мм; K_H — коэффициент нагрузки, принимаемый таким же, как и для цилиндрических прямозубых передач (см. § 3.2), при условии, что степень точности конических колес на единицу выше, чем цилиндрических; T_2 — вращающий момент на колесе, $H \cdot \text{мм}$; b — ширина зубчатого венца, мм.

Аналогичный расчет для конических колес с круговыми зубьями основывается на формулах (3.4) и (3.6). Рекомендуют принимать средний угол наклона зуба $\beta=35^\circ$ (рис. 3.5). При этом коэффициент, учитывающий формулу сопряженных поверхностей зубьев, $Z_H=1,59$. Коэффициент Z_ϵ можно принять таким же, как и для цилиндрических косозубых колес, т. е. $Z_\epsilon=0,8$. Тогда для проверочного расчета стальных конических колес с круговыми зубьями на контактную прочность формула будет иметь вид

$$\sigma_{H} = \frac{270}{R_{e} - 0.5b} \sqrt{\frac{T_{2}K_{H}\sqrt{(u^{2} + 1)^{3}}}{bu^{2}}} \leq [\sigma_{H}].$$
(3.28)

Коэффициент нагрузки K_H представляет собой произведение трех частных коэффициентов, определяемых так же, как и для цилиндрических косозубых колес:

$$K_H = K_{H8}K_{H\alpha}K_{H\nu}$$
.

При проектировочном расчете определяют внешний делительный диаметр колеса, мм:

$$d^{e2} = K_d \sqrt[3]{\frac{T_2 K_{H\beta} u}{[\sigma_H]^2 (1 - 0.5 \psi_{bR})^2 \psi_{bR_\bullet}}},$$
 (3.29)

для прямозубых передач $K_d = 99$; для колес с круговыми зубьями $K_d = 86$.

Полученые значения d_{e2} округляют по ГОСТ 12289—76 (в мм): 50; (56); 63; (71); 80; (90); 100; (112); 125; (140); 160; (180); 200; (225); 250; 280; 315; 355; 400; 450; 500; 560; 630; 710; 800; 900; 1000; 1120; 1250; 1400; 1600.

Предпочтительными являются значения без скобок.

Фактические значения d_{e2} не должны отличаться от номинальных более чем на 2%.

Номинальные значения передаточных чисел u желательно округлить по ГОСТ 12289 – 76: 1; (1,12); 1,25; (1,40); 1,60; (1,80); 2,00; (2,24); 2,50; (2,80); 3,15; (3,55); 4,00; (4,50); 5,00; (5,60); 6,30. Значения без скобок предпочтительнее.

Фактические значения u не должны отличаться от номинальных более чем на 3%.

Коэффициент ширины зубчатого венца $\psi_{bR_{\bullet}} = \frac{b}{R_{\circ}} \le 0,3.$

При проектировании редукторов с параметрами по ГОСТ 12289 – 76 рекомендуется принимать $\psi_{bR} = 0,285$.

Коэффициент $K_{H\beta}$ принимают предварительно для колес с твердостью поверхностей зубьев $HB \le 350$ от 1,2 до 1,35; при твердости HB > 350 – от 1,25 до 1,45 (см. табл. 3.1).

При проверочном расчете значения коэффициента нагрузки уточняют.

Далее определяют числа зубьев колес. Для шестерни

$$z_{1 \min} \geqslant 17 \cos \delta_1 \cos^3 \beta. \tag{3.30}$$

Рекомендуют выбирать $z_1 \approx 18 \div 32$.

Число зубьев колеса $z_2=z_1u$. Так как найденные значения z_1 и z_2 округляют до целых чисел, то после этого следует уточнить $u=\frac{z_2}{z_1}$ и угол $\delta_2=\arctan u$ Внешний окружной модуль

3.11. Конические прямозубые колеса по ГОСТ 19325 – 73 и ГОСТ 19624 – 74 (при $\delta_1+\delta_2=90^\circ$ и $\alpha=20^\circ$)

Параметры	Обозна- чение	Формула
Внешний делительный диаметр	d_{e2}	(3.29)
Внешнее конусное расстояние	R_e	$R_e = \frac{0.5d_e}{\sin \delta}$
Ширина зубчатого венца	b	$b \leqslant 0.3R_e$
Среднее конусное расстояние	R	$R = R_e - 0.5b$
Средний окружной модуль	т	$m = \frac{m_e R}{R_e}$
Средний делительный диа- метр	d	d = mz
Угол делительного конуса	δ	$\delta_2 = \operatorname{arctg} \ u;$ $\delta_1 = 90^{\circ} - \delta_2$
Внешняя высота зуба	h _e	$h_e=2,2m_e$
Внешняя высота головки зуба	h _{ae}	$h_{ae}=m_{\mathbf{e}}$
Внешняя высота ножки зуба	h _{fe}	$h_{fe}=1,2m_e$
Угол головки зуба	θ_a	$\theta_{a1} = \theta_{f2}; \ \theta_{a2} = \theta_{f1}$
Угол ножки зуба	θς	$\theta_{a1} = \theta_{f2}; \ \theta_{a2} = \theta_{f1}$ $\theta_{f} = \operatorname{arctg} \frac{h_{fe}}{R_{e}}$
Внешний диаметр вершин зубьев	d _{ae}	$d_{ae} = d_e + 2h_{ae}\cos\delta$

 $m_e = \frac{d_{e2}}{z_2}$; округлять полученное значение m_e не обязательно.

Остальные параметры передачи определяют по табл. 3.11. Проверку зубьев конических прямозубых колес на выносливость по напряжениям изгиба выполняют по формуле

$$\sigma_F = \frac{F_t K_F Y_F}{\vartheta_F bm} \leqslant [\sigma_F].$$
(3.31)

Здесь K_F — коэффициент нагрузки при расчете на изгиб, выбираемый так же, как и для цилиндрических прямозубых колес; F_i — окружная сила, которую считают приложеннои по касательной к средней делительной окружности

$$F_t = \frac{2T_2}{d_2};$$

 Y_F — коэффициент формы зубьев (см. с. 42), выбираемый в зависимости от эквивалентного числа зубьев $z_v = \frac{z}{\cos \delta}; \ \vartheta_F \approx$

 ≈ 0.85 — опытный коэффициент, учитывающий понижение нагрузочной способности конической прямозубой передачи по сравнению с цилиндрической; m — средний модуль. Допускаемое напряжение $[\sigma_F]$ выбирают так же, как и для цилиндрических зубчатых колес.

Для зубчатых колес с высокой твердостью рабочих поверхностей зубьев может оказаться, что их размеры будут определяться прочностью зубьев на изгиб. В этом случае проектировочный расчет на изгиб выполняют для среднего модуля

$$m = \sqrt[3]{\frac{2TK_FY_F}{\vartheta_F[\sigma_F]\psi_{bm}z}}.$$
 (3.32)

Коэффициент ширины венца по отношению к среднему модулю

$$\psi_{bm}=\frac{b}{m}=\frac{z_1}{6\sin\delta_1}.$$

Предельное значение этого коэффициента

$$\psi_{bm \max} = \frac{z_1}{5,66 \sin \delta_1}.$$

Расчет ведут, как и для цилиндрических зубчатых передач, по тому колесу, для которого отношение $[\sigma_F]/Y_F$ меньше

Особенности расчета конических колес с круговыми зубьями

Для расчета конических колес с круговыми зубьями (см. рис. 3.5) их заменяют биэквивалентными цилиндрическими прямозубыми колесами: во-первых, круговые зубья приводятся к прямым, во-вторых, конические колеса приводятся к цилиндрическим.

3.12. Конические зубчатые колеса с косыми и круговыми зубьями при межосевом угле 90° (см. рис. 3.4 и 3.5)

Параметры	Обозначение и расчетные формулы
	e committee in particulation que viviali
Внешний делительный диа- метр	d_{e2} по формуле (3.29); $d_{e1} = \frac{d_{e2}}{u}$
Внешний торцовый модуль	$m_{le} = \frac{d_{e1}}{z_1} = \frac{d_{e2}}{z_2}$
Внешнее конусное расстояние	$R_e = 0.5 m_{te} \sqrt{z_1^2 + z_2^2}$
Ширина венца	$b \leq 0.3R_e$
Среднее конусное расстояние	$R = R_e - 0.5b$
Средний нормальный модуль	$m_n = m_{te} \left(1 - 0.5 \frac{b}{R_e} \right) \cos \beta$
Средний угол наклона зуба	$\beta = 15 \div 30^{\circ}$ для косозубых колес; $\beta = 30 \div 40^{\circ}$ для круговых зубьев
Внешняя высота зуба	$h_e = 2m_{te}(\cos\beta + 0.1)$
Внешняя высота головки зуба	$h_{ae1} = m_{te} \cos \beta (1 + x_1);$ $h_{ae2} = 2m_{te} \cos \beta - h_{ae1}$
Внешняя высота ножки зуба	$h_{fe1} = h_e - h_{ae1}; \ h_{fe2} = h_e - h_{ae2}$
Угол делительного конуса	$\delta_2 = \operatorname{arctg} \frac{z_2}{z_1}; \ \delta_1 = 90^{\circ} - \delta_2$
Угол ножки зуба	$\theta_{f1} = \operatorname{arctg} \frac{h_{fe1}}{R_e}; \theta_{f2} = \operatorname{arctg} \frac{h_{fe2}}{R_e}$
Угол головки зуба	$\theta_{a1} = \theta_{f2}; \ \theta_{a2} = \theta_{f1}$
Внешний диаметр вершин зубьев	$d_{ae1} = d_{e1} + 2h_{ae1}\cos \delta_1;$ $d_{ae2} = d_{e2} + 2h_{ae2}\cos \delta_2$
Коэффициент радиального смещения у шестерни (рекомендуемый)	$x_1 = 2\left(1 - \frac{1}{u^2}\right) \sqrt{\frac{\cos^3 \beta}{z_1}}$
Коэффициент тангенциального смещения у шестерни при $u > 2,5$	При $\beta = 15 \div 29^{\circ} x_{\tau 1} = 0.07 + 0.01 (u - 2.5);$ при $\beta = 29 \div 40^{\circ} x_{\tau 1} = 0.11 + 0.01 (u - 2.5)$

Расчетные формулы для рассматриваемых колес приводятся по аналогии с формулами для цилиндрических косозубых колес.

Наименования и обозначения геометрических параметров даны по ГОСТ 19326—73. Рекомендуется принимать средний угол наклона зуба $\beta = 35^\circ$. Формулы для геометрического расчета приведены в табл. 3.12.

Для проектировочного расчета служит формула, определяющая требуемую величину внешнего делительного диаметра колеса [см. формулу (3.29)]. Полученное значение d_{e2} округляют по ГОСТ 12289—76 (номинальные значения d_{e2} см. с. 49).

Коэффициент ширины зубчатого венца по отношению к внешнему конусному расстоянию $\psi_{bR} \leq 0.3$.

При выборе параметров передачи надо следить за выполнением условия $b \le 10 m_{te}$, где m_{te} — внешний окружной модуль зубьев.

Формула для проверочного расчета круговых зубьев на выносливость по напряжениям изгиба аналогична формуле (3.25) для цилиндрических косозубых колес. Коэффициенты K_F , $K_{F\infty}$, Y_{β} и Y_F принимают по тем же данным, что и для цилиндрических косозубых колес (см. § 3.3). Окружное усилие

$$F_t = \frac{2T_2}{d_2} = \frac{2T_2 \cos \beta}{m_n z_2},$$

где m_n — средний нормальный модуль зубьев. Для редукторных конических зубчатых передач надо, как правило, назначать 7-ю степень точности изготовления, но значения коэффициентов брать такие, которые соответствуют 8-й степени точности цилиндрических зубчатых колес.

Коэффициент формы зубьев Y_F (см. с. 42) надо выбирать по биэквивалентному числу зубьев

$$z_v = \frac{z}{\cos \delta \cos^3 \beta}.$$

При определении коэффициента $K_{F\alpha}$ [см. формулу (3.25)], учитывающего неравномерность распределения нагрузки между круговыми зубьями, значения коэффициента торцового перекрытия в случаях учебного проектирования можно принимать ориентировочно $\epsilon_{\alpha} \approx 1.3 \div 1.4$.

В связи с тем, что нагрузочная способность конических передач с круговыми зубьями выше, чем конических прямозубых, в формуле отсутствует коэффициент 9_F [см. формулу (3.31)].

глава IV

ЧЕРВЯЧНЫЕ ПЕРЕДАЧИ

§ 4.1. ОБЩИЕ СВЕДЕНИЯ И КИНЕМАТИКА ПЕРЕДАЧИ

Червячные передачи применяют в случаях, когда геометрические оси ведущего и ведомого валов перекрещиваются (обычно под прямым углом).

По форме червяка различают передачи с цилиндрическими и с глобоидными (вогнутыми) червяками. Первые, в свою очередь, подразделяются на передачи с архимедовыми, конволютными и эвольвентными червяками. Здесь рассмотрены только передачи с архимедовыми червяками (в осевом сечении профиль витка трапецеидальный; в торцовом сечении витки очерчены архимедовой спиралью).

Червячные передачи выполняют в виде редукторов, реже — открытыми.

Червячные редукторы наиболее распространенных типов приведены в гл. II.

Передаточное отношение червячной передачи

$$i = \frac{\omega_1}{\omega_2} = \frac{n_1}{n_2} = \frac{z_2}{z_1} = u, \tag{4.1}$$

где ω_1 , n_1 и ω_2 , n_2 — угловые скорости, рад/с, и частоты вращения, об/мин, соответственно червяка и червячного колеса; z_2 — число зубьев червячного колеса; z_1 — число витков (заходов) червяка.

По ГОСТ 2144—76 (передачи червячные цилиндрические) предусмотрено два ряда передаточных чисел u в пределах 8-80, осуществляемых при $z_1=1$, 2 или 4 (червяки с $z_1=3$ в ГОСТ не включены) и $z_2=30\div 80$:

1-й ряд: 8; 10; 12,5; 16; 20; 25; 31,5; 40; 50; 63; 80;

2-й ряд: 9; 11,2; 14; 18; 22,4; 28; 35,5; 45; 56; 71.

Первый ряд следует предпочитать второму. Отклонение фактического u от стандартного допускается не более 4%.

Для получения больших *и* применяют двухступенчатые передачи (см. гл. II).

С увеличением числа витков z_1 возрастает угол подъема витка червяка и повышается КПД передачи. Применение однозаходных червяков без крайней необходимости не рекомендуется. Рекомендуют назначать: $z_1 = 4$ при $u = 8 \div 15$; $z_1 = 2$ при $u = 15 \div 30$ и $z_1 = 1$ при u > 30.

В ряде случаев целесообразно провести параллельно два расчета передачи при разных числах зубьев колеса и заходов червяка и затем уже, исходя из полученных габаритов и КПД передачи, выбрать оптимальный вариант. Например, при u=16 следует произвести расчеты, принимая $z_1=2,\ z_2=32$ и $z_1=4,\ z_2=64$ (в учебных проектах можно допустить $z_1=3$ и $z_2=48$).

§ 4.2. ОСНОВНЫЕ ПАРАМЕТРЫ ПЕРЕДАЧИ

Ниже рассмотрены передачи без смещения с архимедовым червяком, имеющим угол профиля в осевом сечении $\alpha=20^\circ$. Основные параметры передач даны в табл. 4.1.

Червяк. Обозначения основных размеров червяка приведены на рис. 4.1. Связь между расчетным шагом червяка p_1 , модулем m и ходом витка червяка p_{z1} выражается формулой

$$p_1 = \pi m = \frac{p_{z1}}{z_1}. (4.2)$$

4.1. Основные параметры цилиндрических червячных передач, выполненных без смещения (по ГОСТ 2144-76*)

8 32:4 32:2 8 32:4 32:2 8 32:4 32:2 8 32:4 32:2 8 32:4 32:2 0 40:4 40:2 6 40:4 40:2 8 32:4 32:2	2 32:1 2 32:1 2 32:1 2 32:1 2 40:1 2 40:1	40 50 63 80 100 125 140*	1,6 2 4 4 5	10 10 10 12,5 10	40:4 40:4 50:4	40:2 40:2 40:2 50:2 46:2	40:1 40:1 50:1
8 32:4 32:2 8 32:4 32:2 8 32:4 32:2 0 40:4 40:2 6 40:4 40:2	2 32:1 2 32:1 2 32:1 2 40:1 2 40:1	63 80 100 125 140*	4	10 12,5	40:4 50:4	40:2 50:2	40:1 50:1
8 32:4 32:2 8 32:4 32:2 0 40:4 40:2 6 40:4 40:2	2 32:1 2 32:1 2 40:1 2 40:1	80 100 125 140*	4	12,5	50:4	50:2	50:1
8 32:4 32:2 0 40:4 40:2 6 40:4 40:2	2 32:1 2 40:1 2 40:1	100 125 140*	4	12,5	50:4	50:2	50:1
0 40:4 40:2 6 40:4 40:2	2 40:1 2 40:1	125 140*	4	12,5	50:4	50:2	50:1
6 40:4 40:2	2 40:1	140*	t .	1 1			
		6	5	10	46:4	46:2	46:1
8 32:4 32:2	32.1						
		160	1				
8 32:4 32:2	2 32:1	200	8	10	40:4	40:2	40:1
		250	10	10	40 : 4	40 : 2	40 :
40:4 40:	2 40:1	280*	10	10	46:4	46:2	46 :
32:4 32:2	2 32:1	400	16	10	40:4	40:2	40:
40:4 40:2	2 40:1	500	16	12,5	50 : 4	50:2	50:
2	,5 50:4 50: 40:4 40: 32:4 32: 40:4 40:	,5 50:4 50:2 50:1 40:4 40:2 40:1 32:4 32:2 32:1 40:4 40:2 40:1	,5 50:4 50:2 50:1 40:4 40:2 40:1 280* 32:4 32:2 32:1 400 40:4 40:2 40:1 500	,5 50:4 50:2 50:1 280* 10 40:4 40:2 40:1 280* 10 32:4 32:2 32:1 400 16 40:4 40:2 40:1 500 16	,5 50:4 50:2 50:1 280* 10 10 32:4 32:2 32:1 400 16 10 40:4 40:2 40:1 500 16 12,5	,5 50:4 50:2 50:1	.5 50:4 50:2 50:1 40:4 40:2 40:1 280* 10 10 46:4 46:2 32:4 32:2 32:1 400 16 10 40:4 40:2 40:4 40:2 40:1 500 16 12,5 50:4 50:2

^{*} второи ряд.

4.2. Сочетания модулей *m* и коэффициентов *q* диаметра червяка (по ГОСТ 2144-76*)

т, мм	q	<i>т</i> , мм	q	т, мм	q	т, мм	q
1,6	10,0 12,5 16,0 20,0	3,15	8,0 10,0 12,5 16,0	6,30	8,0 10,0 12,5 14,0	12,50	8,0 10,0 12,5 16,0
	8,0 10,0		20,0 8,0		16,0 20,0		20,0 8,0
2,0	12,5 16,0 20,0	4,00	10,0 12,5 16,0	8,00	8,0 10,0 12,5	16,00	10,0 12,5 16,0
	8,0 10,0		20,0 8,0		16,0 20,0	20,00	8,0 10,0
2,50	12,5 16,0 20,0	5,00	10,0 12,5 16,0 20,0	10,00	8,0 10,0 12,5 16,0 20,0		12,5 16,0

Примечание. Для модулей $m \le 10$ допускается q = 25.

Применять червяки с левым направлением нарезки без специальных оснований не следует.

Делительный диаметр червяка, совпадающий в некорригированных передачах с начальным диаметром, берут кратным осевому модулю червяка:

$$d_1 = d_{w_1} = qm, (4.3)$$

где $q = d_1/m$ — коэффициент диаметра червяка.

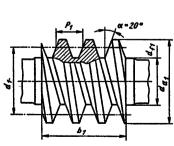


Рис. 4.1. Цилиндрический архимедов червяк

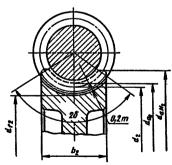


Рис. 4.2. Сечение червяка и колеса плоскостью, перпендикулярной к оси червяка

Для сокращения числа размеров фрез для нарезания червячных колес в стандарте ограничены значения q (табл. 4.2).

Делительный угол подъема витка червяка γ связан с z_1 и q соотношением

$$tg \gamma = \frac{z_1}{q}. \tag{4.4}$$

С увеличением q увеличивается жесткость червяка, но уменьшается угол γ и снижается КПД передачи. Поэтому целесообразно ориентироваться на минимальные значения q, однако с обеспечением достаточной жесткости.

При больших z_2 возрастает расстояние между опорами червяка; для обеспечения достаточной жесткости червяка приходится увеличивать q или m.

Значения γ в зависимости от q и z приведены в табл. 4.3.

_	l	Коэффициент q						
<i>z</i> ₁	8	10	12,5	14	16	20		
1	7°07′	5°43′	4°35′	4°05′	3°35′	2°52′		
2	14°02′	11°19′	9°05′	8°07′	7°07′	5°43′		
3	20°33′	16°42′	13°30′	12°06′	10°37′	8°35		
4	26°34′	21°48′	17°45′	15°57′	14°02′	11°19′		

4.3. Значения угла подъема у на делительном цилнидре червяка

Диаметр вершин витков червяка (при коэффициенте высоты головки, равном единице)

$$d_{a1} = d_1 + 2m = m(q+2). (4.5)$$

Диаметр впадин витков червяка (при коэффициенте радиального зазора 0,2m)

$$d_{f1} = d_1 - 2.4m = m(q - 2.4). (4.6)$$

Длину нарезанной части червяка b_1 принимают:

при
$$z_1 = 1$$
 или 2 $b_1 \ge (11 + 0.06z_2) m;$
при $z_1 = 3$ или 4 $b_1 \ge (12.5 + 0.09z_2) m.$ (4.7)

Для шлифуемых и фрезеруемых червяков величина b_1 , полученная по указанным соотношениям, должна быть увеличена при m<10 мм на 25 мм; при $m=10\div16$ мм на 35-40 мм и при m>16 мм на 50 мм.

Червячное колесо. Сечение червяка и червячного колеса плоскостью, перпендикулярной к оси червяка, показано на рис. 4.2.

Делительный диаметр червячного колеса

$$d_2 = d_{w2} = z_2 m. (4.8)$$

Диаметр вершин зубьев червячного колеса (при коэффициенте высоты головки, равном единице)

$$d_{a2} = d_2 + 2m = m(z_2 + 2). (4.9)$$

Диаметр впадин зубьев червячного колеса (при радиальном зазоре 0,2m)

$$d_{12} = d_2 - 2,4m = m(z_2 - 2,4). (4.10)$$

Наибольший диаметр червячного колеса

$$d_{aM2} \leqslant d_{a2} + \frac{6m}{z_1 + 2}. (4.11)$$

Ширину венца колеса b_2 рекомендуется принимать по соотношениям

при
$$z_1 = 1 \div 3$$
 $b_2 \le 0.75 d_{a1}$; при $z_1 = 4$ $b_2 \le 0.67 d_{a1}$. $\}$ (4.12)

Условный угол обхвата 2δ червяка венца колеса определяется точками пересечения дуги окружности диаметром $d' = d_{a1} - 0.5m$ с контуром венца (см. рис. 4.2):

$$\sin \delta = \frac{b_2}{d_{a1} - 0.5m}. (4.13)$$

Коэффициент полезного действия червячного редуктора с учетом потерь в зацеплении, в опорах и на разбрызгивание и перемешивание масла

$$\eta = (0.95 \div 0.96) \frac{\text{tg } \gamma}{\text{tg } (\gamma + \rho)},$$
(4.14)

где ρ' — приведенный угол трения, определяемый опытным путем.

КПД возрастает с увеличением числа витков червяка (увеличивается γ) и с уменьшением коэффициента трения f' или угла трения ρ' .

При предварительном определении КПД, когда параметры передачи еще неизвестны, для стального червяка и бронзового венца колеса можно принимать $f' \approx 0.04 \div 0.06$, при стальном червяке и чугунном венце $f' \approx 0.08 \div 0.12$ (большие значения для открытых передач).

При более точных расчетах редукторов рекомендуется

4.4. Приведенные коэффициенты трения *f* н углы трения ρ' при работе червячного колеса из оловянной броизы по стальному червяку

<i>v_s</i> , м/с	f	ρ'	$v_s,$ м/с	f	ρ′
0,1 0,25 0,5 1,0 1,5 2,0	0,08-0,09 0,065-0,075 0,055-0,065 0,045-0,055 0,04-0,05 0,035-0,045	3°10′ - 3°40′ 2°30′ - 3°10′ 2°20′ - 2°50′	4,0 7,0 10,0	0,03 - 0,04 0,028 - 0,035 0,023 - 0,030 0,018 - 0,026 0,016 - 0,024 0,014 - 0,020	1°40′ - 2°20′ 1°30′ - 2°00′ 1°20′ - 1°40′ 1°00′ - 1°30′ 0°55′ - 1°20′ 0°50′ - 1°10′

Примечания: 1. Меньшие значения следует принимать при шлифованном или полированном червяке.

принимать значения f' и ρ' в зависимости от скорости скольжения v_s по табл. 4.4.

Скорость скольжения (м/с), которая представляет собой геометрическую разность окружных скоростей червяка и колеса, определяют по формулам

$$v_s = \frac{v_1}{\cos \gamma} \tag{4.15}$$

или

$$v_s = \sqrt{v_1^2 + v_2^2},\tag{4.16}$$

где $v_1=0.5\omega_1d_110^{-3}$ и $v_2=0.5\omega_2d_210^{-3}$ — окружные скорости червяка и колеса, м/с; ω_1 и ω_2 — угловые скорости червяка и колеса, рад/с; d_1 и d_2 — делительные диаметры червяка и колеса, мм.

Для ориентировочной оценки КПД червячного редуктора можно воспользоваться данными, приведенными в гл. I.

Вследствие низкого КПД червячных передач их применяют, как правило, для передачи мощности не свыше 45 кВт и лишь в исключительных случаях до 120-150 кВт.

§ 4.3. РАСЧЕТЫ НА КОНТАКТНУЮ ВЫНОСЛИВОСТЬ И НА ВЫНОСЛИВОСТЬ ПРИ ИЗГИБЕ

Зубья червячного колеса являются расчетным элементом зацепления, так как они имеют меньшую поверхностную и общую прочность, чем витки червяка.

Зубья червячных колес рассчитывают так же, как и зубья зубчатых колес — на контактную выносливость и на выносли-

^{2.} При венце колеса из безоловянной бронзы или латуни табличные значения следует увеличивать на 30-50%.

вость при изгибе; расчет на контактную прочность должен обеспечить не только отсутствие выкрашивания рабочих поверхностей зубьев, но и отсутствие заедания, приводящего к задирам рабочих поверхностей зубьев.

Расчет на контактную выносливость ведут как проектировочный; определяя требуемое межосевое расстояние:

$$a_{w} = \left(\frac{z_{2}}{q} + 1\right) \sqrt[3]{\left(\frac{0,463}{\frac{z_{2}}{q} \left[\sigma_{H}\right]}\right)^{2} T_{p2} E_{np}},$$
 (4.17)

диаметра червяка; $[\sigma_H]$ — допускаемое контактное напряжение; $T_{\rm p2} = T_2 K$ — расчетный момент на валу червячного колеса; $E_{\rm np} = \frac{2E_1 E_2}{E_1 + E_2}$ — приведенный модуль упругости (E_1 — модуль упругости материала червяка, E_2 — то же, венца червячного колеса). Формула справедлива при любых взаимно согласован-

ных единицах измерения входящих в нее величин.

где z_2 — число зубьев червячного колеса; q — коэффициент

Формула (4.17) и приведенные ниже формулы (4.19), (4.21), (4.22) и (4.23) соответствуют наиболее распространенной форме венца червячного колеса, при которой условный угол обхвата $2\delta = 100^{\circ}$ (см. рис. 4.2). При ином значении δ числовые коэффициенты в указанных формулах следует умножить на коэффициент

$$k_{\delta} = \sqrt{\frac{100}{2\delta}}.\tag{4.18}$$

Данные по выбору коэффициента нагрузки К приведены в § 4.4.

В начале расчета предварительно принимают q=8 или 10, а для слабонагруженных передач ($T_2\leqslant 300~{\rm H\cdot M})$ q=12,5 или 16.

Значения $[\sigma_H]$ выбирают по табл., 4.8 — 4.10, предварительно принимая $v_s = 2.5 \div 4$ м/с.

Приведенный модуль упругости $E_{\rm np}$ определяют по известным значениям модулей упругости материалов червяка и венца червячного колеса. Для стали $E_1\approx 2,15\cdot 10^5$ МПа; для чугуна $E_2\approx (0,885\div 1,18)\, 10^5$ МПа; для бронзы $E_2\approx (0,885\div 1,13)\times 10^5$ МПа (большие значения — для твердых безоловянных бронз).

Средние значения модуля упругости чугуна и бронзы примерно одинаковы, поэтому для сочетания материалов сталь —

бронза и сталь — чугун формулу (4.17) можно упростить, введя среднее значение $E_{\rm np}\approx 1,32\cdot 10^5~{\rm MHa}$:

$$a_{w} = \left(\frac{z_{2}}{q} + 1\right) \sqrt[3]{\left(\frac{170}{\frac{z_{2}}{q}} [\sigma_{H}]\right)^{2} T_{2}K},$$
 (4.19)

где T_2 – в Н·мм; a_w – в мм; $[\sigma_H]$ – в МПа.

После определения $a_{\rm w}$ следует найти модуль зацепления из соотношения

$$m = \frac{2a_w}{q + z_2}.\tag{4.20}$$

Полученное значение модуля округляют до ближайшего стандартного (см. табл. 4.2). Округление модуля повлечет за собой изменение межосевого расстояния. После выбора стандартных значений *ти и пеобходимо вычислить фактическое значение межосевого расстояния, соответствующее принятым параметрам.*

Пусть, например, при $z_1=2$, $z_2=32$ и q=10 было получено по формуле (4.19) межосевое расстояние $a_w=78$ мм. Вычисляем модуль

$$m = \frac{2a_w}{q + z_2} = \frac{2 \cdot 78}{10 + 32} = 3,73 \text{ MM}.$$

По табл. 4.2 принимаем m=4 мм и убеждаемся, что при этом стандартном значении модуля имеется q=10. Тогда межосевое расстояние

$$a_w = \frac{q + z_2}{2} m = \frac{10 + 32}{2} 4 = 84 \text{ MM}.$$

Желательно, чтобы окончательно принятое значение межосевого расстояния выражалось целым числом миллиметров (предпочтительно из стандартного ряда, табл. 4.1). Для этого в отдельных случаях (если допустимо некоторое отступление от заданной величины передаточного числа) надо увеличить или уменьшить z_2 на один-два зуба*.

Например, для получения передаточного числа 15,5 было принято $z_1=2; z_2=31;$ после округления параметров получено m=5 мм и q=10. Тогда

^{*} Для передач, выполненных со смещением, можно получить $a_{\rm w}$, выражающееся целым числом миллиметров, без изменения z_2 [10, 17].

$$a_{\rm w} = \frac{q + z_2}{2}m = \frac{10 + 31}{2}5 = 102,5$$
 mm.

Целесообразно принять $z_2 = 32$; тогда

$$a_w = \frac{10 + 32}{2} = 105$$
 MM.

При этом передаточное число $\frac{32}{2} = 16$.

Отклонение от заданного $\frac{16-15,5}{15,5}100\% = 3,2\%$ при допустимом отклонении до 4%.

Если в задании на проектирование обусловлено, что проектируемый редуктор предназначен для серийного выпуска, то следует согласовать с ГОСТом не только m и q, но и величины a_w , z_1 и z_2 (см. табл. 4.1).

Так, редуктор со стандартными параметрами по ГОСТ 2144-76 будет иметь $a_w=100$ мм, m=5 мм, q=8, $z_2:z_1=32:2$.

После окончательного установления параметров зацепления следует уточнить коэффициент нагрузки и допускаемое напряжение (если оно зависит от скорости скольжения) и проверить расчетные контактные напряжения.

При любом сочетании материалов червяка и колеса

$$\sigma_H = \frac{1{,}31}{d_2} \sqrt{\frac{T_2 K E_{np}}{d_1}} \leqslant [\sigma_H]. \tag{4.21}$$

При стальном червяке и червячном колесе, изготовленном из чугуна или имеющем бронзовый венец,

$$\sigma_H = \frac{475}{d_2} \sqrt{\frac{T_2 K}{d_1}} \leqslant [\sigma_H]$$
 (4.22)

или

$$\sigma_H = \frac{170}{\frac{z_2}{q}} \sqrt{\frac{T_2 K \left(\frac{z_2}{q} + 1\right)^3}{a_w^3}} \leqslant [\sigma_H], \qquad (4.23)$$

где σ_H и $[\sigma_H]$ — в МПа; d_1 , d_2 , a_w — в мм и T_2 — в Н · мм. Результат проверочного расчета следует признать неудовлет-ворительным, если σ_H превышает $[\sigma_H]$ более чем на 5% (передача перегружена), а также в случае, если расчетное напряжение ниже допускаемого на 15% и более (передача не-

догружена). В том и другом случае надо изменить параметры передачи и повторить проверку напряжений.

Расчет зубьев червячного колеса на выносливость по напряжениям изгиба (зубья колеса обладают меньшей прочностью, чем витки червяка) выполняют по формуле

$$\sigma_F = \frac{1,2T_2KY_F\xi}{z_2b_2m^2} = \frac{0,6F_{t2}KY_F\xi}{b_2m} \le [\sigma_F],$$
 (4.24)

где σ_F — расчетное напряжение изгиба; T_2K — расчетный момент на валу червячного колеса; F_{t2} — окружная сила на червячном колесе; K — коэффициент нагрузки (см. § 4.4); величину F_{t2} определяют по известному моменту на валу червячного колеса:

$$F_{t2}=\frac{2T_2}{d_2};$$

 Y_F — коэффициент формы зуба, принимаемый по табл. 4.5 в зависимости от эквивалентного числа зубьев червячного колеса

$$z_v = \frac{z_2}{\cos^3 \gamma};$$

 ξ — коэффициент, учитывающий ослабление зубьев в результате износа; для закрытых передач $\xi = 1,0$, для открытых передач $\xi \approx 1,5$; $[\sigma_F]$ — допускаемое напряжение изгиба $([\sigma_{0F}]$ — при работе зубьев одной стороны, $[\sigma_{-1F}]$ — при работе зубьев обеими сторонами); значения приведены в \S 4.4.

4.5. Коэффициент Y_F формы зуба для червячных колес

z_v	28	30	35	40	45	50	65	80	100	150
Y_F	2,43	2,41	2,32	2,27	2,22	2,19	2,12	2,09	2,08	2,04

Как формула (4.24), так и приведенная ниже формула (4.25) справедливы при любых взаимно согласованных единицах измерения. Целесообразно принять σ_F и $[\sigma_F]$ в МПа; m, d_1 и d_2 в мм; F_{t2} в H; T_2 в $H \cdot$ мм.

Обычно расчетные напряжения изгиба в зубьях колес, размеры которых определены из расчета на контактную прочность, оказываются значительно ниже допускаемых.

В редких случаях для открытых передач при большом числе зубьев колеса ($z_2 > 80$) может оказаться, что изгибная прочность недостаточна. В таком случае модуль зацепления определяют из проектировочного расчета зубьев на изгиб (при $\xi = 1.5$) по формуле

$$m = \sqrt[3]{\frac{1,8T_2KY_F}{[\sigma_F]z_2q}}.$$
 (4.25)

Предварительно принимают q=12,5; в дальнейшем его значение уточняют по ГОСТу (см. табл. 4.2).

В тех случаях, когда в передаче возникают пиковые нагрузки, следует проверять рабочие поверхности зубьев на отсутствие хрупкого разрушения и пластических деформаций; то же относится к общей (изгибной) прочности зубьев. Эти проверки производят так же, как и для зубчатых передач (см. гл. НІ); значения предельных допускаемых напряжений приведены в § 4.4.

Помимо рассмотренных расчетов на контактную выносливость и изгиб, для червячных передач обязательна проверка на жесткость (см. гл. VIII) и тепловой расчет редуктора (см. гл. X).

§ 4.4. КОЭФФИЦИЕНТ НАГРУЗКИ. МАТЕРИАЛЫ И ДОПУСКАЕМЫЕ НАПРЯЖЕНИЯ

Коэффициент нагрузки для червячных передач

$$K = K_{\beta}K_{\nu}$$

где K_{β} — коэффициент, учитывающий неравномерность распределения нагрузки по длине контактных линий; K_{ν} — коэффициент, учитывающий динамическую нагрузку, возникающую в запеплении.

Коэффициент K_{β} зависит от характера изменения нагрузки и от деформаций червяка

$$K_{\beta} = 1 + \left(\frac{z_2}{\theta}\right)^3 (1 - x),$$
 (4.26)

где θ — коэффициент деформации червяка, определяемый по табл. 4.6; x — вспомогательный коэффициент, зависящий от

_			Значе	ния <i>q</i>		
<i>z</i> į	×,8	10	12,5	14	16	20
9.1	72	108	154	176	225	248
2	57	86	121	140	171	197
3	51	76	106	132	148	170
4	47	70	98	122	137	157

4.6. Коэффициент деформации червяка в

$$x = \frac{\sum T_i t_i n_i}{T_{\text{max}} \sum t_i n_i},\tag{4.27}$$

 T_i , t_i , n_i — соответственно вращающий момент, продолжительность и частота вращения при режиме i; T_{\max} — максимальный длительно действующий вращающий момент. В расчетах, когда не требуется особая точность, можно принимать: при постоянной нагрузке x=1,0; при незначительных колебаниях нагрузки $x\approx0,6$; при значительных колебаниях нагрузки $x\approx0,3$.

При постоянной нагрузке коэффициент $K_8 = 1,0$.

Коэффициент K_v зависит от точности изготовления передачи и от скорости скольжения v_s (табл. 4.7). По этой таблице можно назначать степень точности передачи.

Степень	Скорость скольжения v_s , м/с							
точности	до 1,5	св. 1,5 до 3	св. 3 до 7,5	св. 7,5 до 12				
6	-	_	1,0	1,1				
7	1,0	1,0	1,1	1,2				
8	1,15	1,25	1,4	_				
9	1,25	-		_				

4.7. Коэффициент динамичности иагрузки K_n

По ГОСТ 3675—81 установлено 12 степеней точности для червячных передач; для силовых передач предназначаются степени точности от 5-й до 9-й в порядке убывания точности; для редукторов общего назначения применяют в основном 7-ю и 8-ю степени точности.

Материалы червяка и червячного колеса выбирают с учетом условий работы проектируемой передачи и скорости скольжения: при $v_s \le 2$ м/с допустимо применять чугунные червячные колеса, работающие в паре со стальными червяками. При больших значениях v_s червячное колесо делают составным: венец (бандаж) из бронзы, а колесный центр — из чугуна. Наилучшими антифрикционными свойствами обладают оловянно-фосфорные бронзы (БрО 10Ф1, БрО 10Н1Ф1). Часто применяют также оловянно-цинково-свинцовые бронзы (например, БрО 5Ц5С5) и безоловянные бронзы (БрА9ЖЗЛ, БрА10Ж4Н4Л).

Оловянные бронзы применяют при скоростях скольжения до 25 м/с. Безоловянные бронзы значительно дешевле оловянных, имеют высокие механические характеристики, но антифрикционные свойства их несколько хуже. Для безоловянных бронз допускаемая скорость скольжения до 7—8 м/с (в крайнем случае до 10 м/с) при работе в паре со стальным

4.8. Механические характеристики, основные допускаемые контактные напряжения $[\sigma_H]'$ и основные допускаемые напряжения изгиба $[\sigma_{0F}]'$ и $[\sigma_{-1F}]'$ для материалов червячных колес, МПа

		Пред	делы)	Допускае:				1
Марка					твеј	одості	и чері	зяка	
бронзы или	об вки	проч-	теку-	1	HRC < 45			$HRC \ge 4$	5
чугун а	Способотливки	ности	1 6 1		[σ _{-1F}]′	[σ _H]′	[σ _{0F}]′	[σ ₋₁ F]′	[σ _{<i>Η</i>]′}
БрО10Ф1	П	200	100	45	30	135	55	40	168
БрО10Ф1	К	255	147	57	41	186	71	51	221
БрО10Н1Ф1	Ц	285	165	64	45	206	80	56	246
БрО5Ц5С5	п	150	80	35	25	111	45	32	133
БрО5Ц5С5	К	200	90	45	32	132	53	38	159
БрА9Ж3Л	п	392	196	81	63	_	98	75	-
БрА9Ж3Л	К	490	236	85	69	_	108	83	-
БрА10Ж4Н4Л	П; К	590	275	101	81	-	130	98	-
СЧ10	П	118	-	33	20	-	41	25	-
СЧ15	П	147	<u> </u>	37	23	-	47	29	-
СЧ18	П	177	-	42	26	-	53	33	-
СЧ20	П	206	-	47	29	-	59	36	-
	L	L	L	1	L	L	L	<u> </u>	1

 Π римечание K — огливка в кокиль, Π — отливка в песчаную форму, Π — отливка центробежная.

шлифованным или полированным червяком, имеющим твердость рабочих поверхностей не ниже HRC 45 (закалка обеспечивает HRC 45 – 50, а цементация и закалка – HRC 56 – 62).

Для изготовления червяков применяют среднеуглеродистую конструкционную сталь (сталь 45, 50) и различные марки легированной стали (12ХНЗА, 15Х, 20Х, 20ХНЗА — цементуемые, а затем закаливаемые; 40Х, 40ХН, 30ХГС, 35ХМ — подвергаемые закалке или улучшению; 38ХМЮА — азотируемую). Термическая или термохимическая обработка червяка до твердости выше *HRC* 45 и последующее шлифование или полирование позволяют повысить допускаемые напряжения для червячных пар (табл. 4.8).

Расчетные значения допускаемых напряжений изгиба $[\sigma_{0F}]$ и $[\sigma_{-1F}]$ и контактных (в тех случаях, когда эти напряжения определяются по сопротивлению усталостному выкрашиванию — см. табл. 4.8) получают умножением табличных значений $[\sigma_{0F}]'$, $[\sigma_{-1F}]'$, $[\sigma_{H}]'$ на коэффициенты долговечности:

$$\begin{bmatrix} \sigma_H \end{bmatrix} = \begin{bmatrix} \sigma_H \end{bmatrix}' K_{HL};$$

$$\begin{bmatrix} \sigma_{0F} \end{bmatrix} = \begin{bmatrix} \sigma_{0F} \end{bmatrix}' K_{FL} \quad \text{и} \quad \begin{bmatrix} \sigma_{-1F} \end{bmatrix} = \begin{bmatrix} \sigma_{-1F} \end{bmatrix}' K_{FL}.$$

Значения K_{FL} при бронзовом венце червячного колеса определяют по формуле

$$K_{FL} = \sqrt[9]{\frac{10^6}{N_{\Sigma}}},\tag{4.28}$$

где N_{Σ} – суммарное число циклов перемен напряжений.

Для передач машинного привода при числе циклов каждого зуба колеса меньшем, чем 10^6 , следует принимать $N_{\Sigma}=10^6$; если окажется, что число циклов больше $25\cdot 10^7$, надлежит принимать $N_{\Sigma}=25\cdot 10^7$. Следовательно, значения K_{FL} изменяются в пределах $\max K_{FL}=1,0$; $\min K_{FL}=0,543$.

Для передач с чугунными червячными колесами, работающих длительное время, следует принимать $K_{FL}=1,0.$

При ручном приводе независимо от материала венца червячного колеса рекомендуется принимать $K_{FL}=1,5$.

Величину N_{Σ} вычисляют по формуле

$$N_{\Sigma} = 60n_2t,\tag{4.29}$$

где n_2 – частота вращения червячного колеса, об/мин; t – срок службы передачи, ч.

Коэффициент долговечности при вычислении $[\sigma_{II}]$ определяют по формуле

$$K_{HL} = \sqrt[8]{\frac{10^7}{N_{\Sigma}}}. (4.30)$$

При нереверсивной работе передачи значение N_{Σ} вычисляют по формуле (4.29). В случае реверсивной нагрузки с одинаковым временем работы в обоих направлениях в формулу (4.30) следует подставлять значение N_{Σ} вдвое меньшее, чем вычисленное по формуле (4.29).

При числе циклов, превышающем $25 \cdot 10^7$, в формулу (4.30) следует подставлять $N_{\Sigma} = 25 \cdot 10^7$; следовательно, минимальное значение рассматриваемого коэффициента $\min K_{HL} = 0.67$.

Найденное по формуле (4.30) значение K_{HL} не должно превышать своего максимального значения $\max K_{HL} = 1,15$; если получится $K_{HL} > \max K_{HL}$, то надо принимать $K_{HL} = 1,15$.

Приведенные данные для определения коэффициентов K_{FL} и K_{HL} относятся к передачам, работающим с примерно постоянной нагрузкой; при переменной нагрузке следует исходить из эквивалентного числа циклов

$$N_{3} = \frac{60 \sum T_{i}^{x} t_{i} n_{i}}{T_{\max}^{x}},$$

4.9. Допускаемые контактные напряжения для червячных колес из условия стойкости против заедания

Мате	риал	[он], МПа, при скорости								
венца		скольжения v_s , м/с								
червячного колеса	червяка	0	0,25	0,5	1	2	3	4	6	8
БрА9Ж3Л	Сталь, твер- дость <i>HRC</i> >45	-	_	182	179	173	167	161	150	138
БрА10Ж4Н4Л	То же	_	_ :	196	192	187	181	175	164	152
СЧ15 или СЧ18	Сталь 20 или 20X цементо- ванная	184				84,5		`	-	-
СЧ10 или СЧ15	Сталь 45 или Ст6	170	141	113	98	71	-	-	-	-

4.10. Предельные допускаемые напряжения при пиковых нагрузках

Материал	[<i>о_Н</i>] _{пред}	[<i>о_F</i>] _{пред}	
Оловянные бронзы Безоловянные бронзы	4σ _τ 2σ _τ	0,8 _°	
Чугун	260-300 МПа	0,6თ _в	

где T_i , t_i , n_i — соответственно вращающий момент, продол жительность его действия и частота вращения при i-м режиме; T_{\max} — наибольший длительно действующий момент; показатель степени x=9 при определении K_{FL} и x=4 при определении K_{HL}

Допускаемые контактные напряжения, если они установлены по условию сопротивления заеданию и зависят от скорости скольжения, выбирают по табл. 4.9. Табличные значения являются одновременно и расчетными, так как допускаемые напряжения не связаны с сопротивлением усталостному выкрашиванию и коэффициент долговечности в этом случае не должен учитываться.

Предельные допускаемые напряжения, по которым ведется расчет при пиковых нагрузках, приведены в табл. 4.10.

ПЛАНЕТАРНЫЕ ЗУБЧАТЫЕ ПЕРЕДАЧИ

§ 5.1. ОБЩИЕ СВЕДЕНИЯ И КИНЕМАТИЧЕСКИЙ РАСЧЕТ

Планетарными называют передачи, колеса которых движутся подобно планетам солнечной системы (рис. 5.1): центральные колеса вращаются только вокруг своей оси (называемой центральной), а сателлиты 2, входящие в зацепление с центральными колесами, вращаются вокруг осей центральной и своей. Оси сателлитов закреплены на водиле, вращающемся относительно центральной оси.

В передаче по рис. 5.1 колесо 3 закреплено в корпусе, колесо 1—ведущее, ведомое звено—водило Н. В некоторых случаях неподвижным делают центральное колесо 1 (см. схему 2 табл. 5.1). Если неподвижным сделать водило, то оси сателлитов станут неподвижными и планетарная передача превратится в простую соосную передачу с паразитными

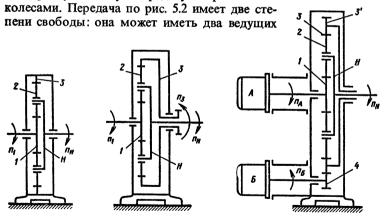


Рис. 5.1. Кинематическая схема планетарной передачи с одной степенью свободы

Рис. 5.2. Кинематическая схема планетарной дифференциальной передачи

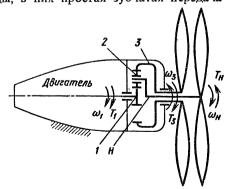
Рис. 5.3. Кинематическая скема планетарной дифференциальной передачи с двумя ведущими звеньями (1 я 4)

5.1. Кинематические схемы наиболее распространенных планетарных передач и их основные параметры

№ cxe- мы	Кинематическая схема передачи	Передаточное отно- шение и его рацио- нальные пределы. Частота вращения сателлита относи- тельно водила	КПД и его ориентировоч- ные предельные значения
1		$ \begin{aligned} & \mathbf{f}_{1H}^{(3)} = 3,2 \div 12; \\ & \mathbf{f}_{1H}^{(3)} = 1 + \frac{z_3}{z_1}; \\ & n_2^{(H)} = -n_H^{(3)} \frac{z_3}{z_2} \end{aligned} $	$ \eta_{1H}^{(3)} = 0.98 \div 0.96; \eta_{1H}^{(3)} = 1 - \frac{z_3}{z_1 + z_3} \psi_{13}^{(H)}; \psi_{13}^{(H)} = \psi_{12}^{(H)} + \psi_{23}^{(H)} $
2	2	$i_{3H}^{(1)} = 1,1 \div 1,5;$ $i_{3H}^{(1)} = 1 + \frac{z_1}{z_3}$ $n_2^{(H)} = -n_H^{(1)} \frac{z_1}{z_2}$	$ \eta_{3H}^{(1)} = 0,99 \div 0,98 $ $ \eta_{3H}^{(1)} = 1 - \frac{z_1}{z_1 + z_3} \psi_{31}^{(H)}; $ $ \psi_{31}^{(H)} = \psi_{32}^{(H)} + \psi_{21}^{(H)} $
3	3 1 2' 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$i_{H1}^{(3)} = 100 \div 500;$ $i_{H1}^{(3)} = \frac{z_1 z_2}{z_1 z_2 - z_2 z_3}$ $n_{2-2}^{(H)} = -n_H^{(3)} \frac{z_3}{z_2}$	$\begin{aligned} \eta_{H1}^{(3)} &= 0.3 \div 0.1; \\ \eta_{H1}^{(3)} &= \frac{1}{1 + \left \frac{z_2 z_3}{z_1 z_2, -z_2 z_3} \right \psi_{13}^{(H)};} \\ \psi_{13}^{(H)} &= \psi_{12}^{(H)} + \psi_{23}^{(H)} \end{aligned}$
4	1 2 3 1 2 3 1 2 3 1 2 3 1 3 3	$i_{1H}^{(3)} \approx 2;$ $i_{1H}^{(3)} = 1 + \frac{z_3}{z_1};$ $n_2^{(H)} = -n_H^{(3)} \frac{z_3}{z_2}$	$ \eta_{1H}^{(3)} = 0.98 \div 0.96; \eta_{1H}^{(3)} = 1 - \left \frac{z_3}{z_1 + z_3} \right \psi_{13}^{(H)}; \psi_{13}^{(H)} = \psi_{12}^{(H)} + \psi_{23}^{(H)} $

MPI CXG- Nō	Кинематическая схема передачи	Передаточное отно- шение и его рацио- нальные пределы. Частота вращения сателлита относи- тельно водила	КПД и его ориентировоч- ные предельные значения
5	3 2 4 4 1 1 1 1 1 1	$i_{14}^{(3)} = i_{1H}^{(3)} i_{H4}^{(3)} = \frac{i_{1H}^{(3)}}{i_{1}^{(3)}} =$	$\eta_{14}^{(3)} = 0.9 \div 0.8;$ $\eta_{14}^{(3)} = \left(1 - \frac{z_3}{z_1 + z_3} \psi_{13}^{(H)}\right) \times \frac{1}{1 + \left \frac{z_2 \cdot z_3}{z_4 z_2 - z_2 \cdot z_3}\right \psi_{43}^{(H)}};$ $\psi_{13}^{(H)} = \psi_{12}^{(H)} + \psi_{23}^{(H)};$ $\psi_{43}^{(H)} = \psi_{42}^{(H)} + \psi_{23}^{(H)}$

Примечания: 1. В приведенных формулах верхний индекс, стоящий в скобках при i, n, η и ψ , обозначает неподвижное звено. Первый нижний индекс обозначает ведущее звено, второй — ведомое.


2. Ориентировочное значение коэффициента потерь в одной паре зубчатых колес $\psi^{(H)}=0{,}025.$

звена и одно ведомое (рис. 5.3) или одно ведущее и два ведомых (рис. 5.4). Передачи по рис. 5.4 применяют для привода двух соосных ведомых звеньев, например винтов самолетов. На рис. 5.5 приведены кинематические схемы замкнутых дифференциалов с одной степенью свободы, в них простая зубчатая передача

соединяет центральные колеса или одно из них с водилом. Основная планетарная передача показана жирными линиями, замыкающая — тонкими.

В табл. 5.1 приведены кинематические схе-

Рис. 5.4. Кинематическая схема планетарной дифференциальной передачи с двумя ведомыми звеньями (3 и H)

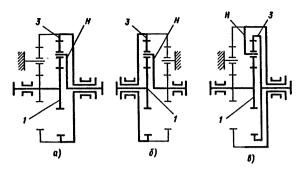


Рис. 5.5. Кинематические схемы планетарных замкнутых дифференциальных передач. Замыкающая передача соединяет: a — колесо 1 и 3; 6 — колесо 3 и водило H; a — колесо 1 и водило 1

мы и формулы для определения основных параметров планетарных передач. Наиболее распространена передача, показанная на схеме 1. По сравнению с другими она имеет малые габариты, большую нагрузочную способность и высокий КПД.

Передачу по схеме 2 применяют обычно в комбинации с передачами простой зубчатой и по схеме 1 в приводах повышенной надежности (см. рис. 5.3).

Передачи по схеме 3 характеризуются большими передаточными отношениями, но имеют низкий КПД и малую нагрузочную способность (они однопоточные). Их применяют в приводах с малыми нагрузками или кратковременного включения.

Передачи по схеме 4 применяют как дифференциальные (с ведущим водилом и ведомыми центральными колесами 1 и 3) в ведущих мостах транспортных машин, в дифференциальных механизмах приборов (с ведущими центральными колесами 1 и 3, а водилом — ведомым) и как редукторную (с одной степенью-свободы).

Передачи по схеме 5 имеют диапазон передаточных отношений, как и передачи по схеме 3, но более высокий

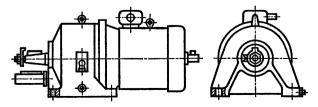


Рис. 5.6. Чертеж мотор-редуктора в исполнения «на лапах»

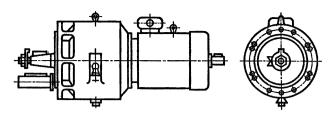


Рис. 5.7. Чертеж мотор-редуктора в исполнении «на опорном фланце»

КПД и большую нагрузочную способность (благодаря многопоточности). Технологически сложны вследствие наличия блока сателлитов 2-2'. Применяют в кинематических и силовых приводах.

Все планетарные передачи в поперечном сечении круглые, поэтому их удобно стыковать с фланцевыми электродвигателями в одну сборочную единицу — мотор-редуктор. Планетарные мотор-редукторы делают в двух исполнениях: на лапах (рис. 5.6) и на опорном фланце (рис. 5.7). В приложении приведены параметры планетарных редукторов и мотор редукторов общего применения.

§ 5.2. УСЛОВИЯ СОБИРАЕМОСТИ СООСНЫХ И МНОГОПОТОЧНЫХ ПЕРЕДАЧ

Планетарные передачи по схемам табл. 5.1 (кроме передачи по схеме 3) многопоточные соосные. Поэтому для их собираемости при выборе чисел зубьев колес надо выполнять следующие условия.

Условие соосности. Для передач, где сателлит или паразитное колесо входят в зацепление с солнечным и корончатым колесами (схемы 1, 2, табл. 5.1) это условие выражается равенством межосевых расстояний

$$a_{w12} = a_{w23}$$
.

Если зубчатые колеса нарезаны без смещения инструмента, то

$$a_{12} = a_{23}$$
.

Выражая \dot{a}_{12} и a_{23} через модуль и числа зубьев, получим

$$0.5m(z_1 + z_2) = 0.5m(z_3 - z_2);$$

$$z_1 + z_2 = z_3 - z_2.$$
(5.1)

Числа зубьев корончатого колеса 3 и сателлита 2

$$z_3 = z_1 + 2z_2;$$

$$z_2 = 0.5(z_3 - z_1) = 0.5z_1(i_{1H}^{(3)} - 2).$$
(5.2)

Для передачи по схеме 3, где колеса расположены в двух параллельных плоскостях, условие соосности

$$a_{w12} = a_{w2'3}. (5.3)$$

Если модули обеих пар колес равны и они нарезаны без смещения инструмента, то условие соосности

$$z_1 - z_2 = z_3 - z_2. (5.4)$$

Для передачи по схеме 5, где колеса также расположены в двух параллельных плоскостях, условие соосности

$$a_{w12} = a_{w23} = a_{w2'4} \tag{5.5}$$

или (при равных модулях и зубьях, нарезанных без смещения инструмента)

$$z_1 + z_2 = z_3 - z_2 = z_4 - z_2$$
 (5.6)

В многопоточных передачах для их сборки, кроме условия соосности, необходимо выполнить еще два условия.

Условие соседства. Чтобы соседние сателлиты или паразитные колеса не касались друг друга (рис. 5.8), необходимо выполнить условие

$$O_2O_{2'} > d_{a2}, (5.7)$$

где O_2O_2 . — межосевое расстояние между соседними сателлитами; d_{a2} — диаметр окружности выступов сателлитов.

Выражая O_2O_2 через межосевое расстояние a_{w12} , получим

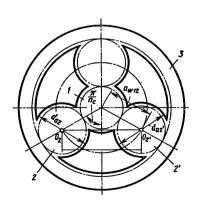


Рис. 5.8. К условию соседства сателлитов или паразитных колес в многопоточных передачах

74

$$2a_{w12}\sin\frac{\pi}{n_c} > d_{a2}, \quad (5.8)$$

где $n_{\rm c}$ — число сателлитов.

Если зубья нарезаны без смещения, то

$$a_{w12} = a_{12} = 0.5m(z_1 + z_2);$$

$$d_{a2} = mz_2 + 2m;$$

$$(z_1 + z_2)\sin\frac{\pi}{n} > z_2 + 2.$$
 (5.9)

Минимальное значение зазора между окружностями вершин зубьев соседних сателлитов принимают равным модулю Условие вхождения зубьев в зацепления при равных углах расположения сателлитов. Для передач, где колеса расположены в одной плоскости.

$$\frac{z_1+z_3}{n_{\rm c}}=\mbox{целое число}$$
 или на основании формулы (5.2)
$$\frac{2\left(z_1+z_2\right)}{n_{\rm c}}=\mbox{целое число.}$$

В передачах, где колеса расположены в двух параллельных плоскостях, для выполнения этого условия зубья всех центральных колес надо выбирать кратными числу сателлитов. Относительное расположение зубьев во всех сателлитах с двумя венцами должно быть одинаковым.

§ 5.3. ОПРЕДЕЛЕНИЕ ЧИСЕЛ ЗУБЬЕВ КОЛЕС

Числа зубьев подбирают после выбора передаточного отношения и числа сателлитов в зависимости от кинематической схемы передачи и конструкции (редуктор или моторредуктор).

Подбор чисел зубьев колес для схем 1, 2 и соответствующих им ступеней сложных передач, выполненных по схеме 5 (см. табл. 5.1.). Принимают число зубьев солнечного колеса $z_1 \geqslant 13$ (во избежание подрезания ножек зубьев); числа зубьев сателлитов z_2 определяют по формуле

$$z_2 = 0.5z_1(i_{1H}^{(3)} - 2),$$
 (5.11)

округляя до ближайшего целого числа. Число зубьев корончатого колеса z_3 определяют по формуле (5.2).

По формулам табл. 5.1 уточняют передаточное отношение и сравнивают его с заданным. Допускается отклонение не более чем на 4% для одноступенчатых редукторов, 5% — для двухступенчатых. Далее проверяют выполнение условий вхождения зубьев в зацепление и соседства.

Пример 1. Подобрать числа зубьев колес планетарного редуктора по рис. 5.1 с передаточным соотношением $i_H^{(3)} = 5,6$ и числом сателлитов $n_c = 3$.

- 1. Выбираем число зубьев солнечного колеса $z_1 = 15$.
- 2. Определяем число зубьев сателлитов по формуле (5.11)

$$z_2 = 0.5z_1(i_{1H}^{(3)} - 2) = 0.5 \cdot 15(5.6 - 2) = 27.$$

3. Проверяем условие вхождения зубьев в зацепления по формуле (5.10)

$$\frac{2(z_1+z_2)}{n_c}=\frac{2(15+27)}{3}=28.$$

Условие выполнено.

4. Проверяем выполнение условия соседства по формуле (5.9)

$$(z_1 + z_2) \sin \frac{\pi}{n_c} > z_2 + 2$$
; $(15 + 27) \sin \frac{\pi}{3} > 27 + 2$; $36,4 > 29$.

Условие выполнено.

5. Число зубьев корончатого колеса по формуле (5.2)

$$z_3 = z_1 + 2z_2 = 15 + 2 \cdot 27 = 69.$$

6. Уточняем передаточное отношение по формуле табл. 5.1

$$i_{1H}^{(3)} = 1 + \frac{z_3}{z_1} = 1 + \frac{69}{15} = 5,6,$$

что соответствует заданному.

Порядок подбора чисел зубьев передачи по схеме 1, выполненной как мотор-редуктор специального назначения (его параметры не регламентированы ГОСТ) имеет свои особенности, поясненные ниже численным примером.

Пример 2. Подобрать числа зубьев колес мотор-редуктора специального назначения по схеме 1 (см. табл. 5.1) с передаточным отношением $i_{1H}^{(3)}=6,3$ и числом сателлитов $n_{\rm c}=3$. Присоединяемый электродвигатель 4A112M2V3, наружный диаметр фланца D=300 мм.

1. Определяем делительный диаметр d_3 корончатого колеса $d_3 \approx D - (30 \div 40) = 300 - (30 \div 40) = 270 \div 260$ мм.

Ряд делительных диаметров (в мм) по ГОСТ 25022—81 следующий: 100; 125; 160; 200; 250; 315; 400; 500; 630; 800; 1000. Принимаем ближайшее значение $d_3 = 250$ мм. Соответственно m = 2 мм.

2. Определяем число зубьев корончатого колеса

$$z_3 = \frac{d_3}{m} = \frac{250}{2} = 125.$$

3. Число зубьев солнечного колеса определяем на основании формулы $i_{1H}^{(3)}=\frac{z_3}{z_1}+1$ (см. табл. 5.1), откуда $z_1=\frac{z_3}{i_{1H}^{(3)}-1}=\frac{125}{6,3-1}\approx 23,6.$ Принимаем $z_1=24$.

4. Число зубьев сателлита - по формуле (5.2)

$$z_2 = 0.5(z_3 - z_1) = 0.5(125 - 24) = 50.5.$$

Принимаем $z_2 = 51$, тогда $z_3 = z_1 + 2z_2 = 24 + 2 \cdot 51 = 126$.

5. Проверка условия вхождения зубьев в зацепление:

$$\frac{z_1 + z_3}{n_c} = \frac{24 + 126}{3} = 50$$
 (целое число).

6. Проверка условия соседства

$$(z_1 + z_2)\sin\frac{\pi}{n_c} > z_2 + 2$$
; $(24 + 51)\sin\frac{\pi}{3} > 51 + 2$; $65 > 53$.

7. Уточняем передаточное отношение

$$i_{1H}^{(3)} = 1 + \frac{z_3}{z_1} = 1 + \frac{126}{24} \approx 6,26.$$

8. Отклонение его от заданного

$$\Delta_{\rm i} = \frac{i_{\rm 3a, I} - i_{\rm \phi aK}}{i_{\rm 3a, I}} 100 = \frac{6.3 - 6.26}{6.3} 100 \approx 0.64 \%,$$

что допустимо ($\Delta_{i \max} = 4 \%$).

Окончательное значение чисел зубьев: $z_1=24; z_2=51;$ $z_3=126; m=2$ мм; $d_3=mz_3=2\cdot 126=252$ мм.

ГОСТ 250022—81 допускает отклонение значения делительного диаметра корончатого колеса 3 от номинального в пределах допускаемых отклонений передаточного отношения.

Для предварительного выбора чисел зубьев колес планетарных передач по схемам 1 и 2 (см. табл. 5.1) удобно пользоваться табл. 5.2.

5.2. Таблица передаточных отношений и чисел зубьев колес для схемы рис. 5.1

z 3	<i>z</i> ₁	z ₂	i(3)	i(1) i3H
50 55 60 63 65 68 70 75	16-20 15-23 16-24 15-27 15-27 16-28 16-30 15-31 16-34	17-15 20-16 22-18 24-18 25-19 26-20 27-20 30-22 32-23	4,125 – 3,500 4,670 – 3,391 4,750 – 3,500 5,200 – 3,333 5,333 – 3,407 5,250 – 3,429 5,375 – 3,333 6,000 – 3,419 6,000 – 3,353	1,320 – 1,400 1,273 – 1,418 1,267 – 1,400 1,238 – 1,429 1,231 – 1,415 1,235 – 1,412 1,229 – 1,429 1,200 – 1,413 1,200 – 1,425

z ₃	z ₁	z_2	i(3)	i(1) i3H
85	15-35	35-25	6,667 – 3,429	1,176 - 1,412
90	16-38	37-26	6,625 – 3,368	1,178 - 1,422
95	15-39	40-28	7,333 – 3,346	1,158 - 1,411
100	16-42	42-29	7,250 – 3,381	1,160 - 1,420
105	17-45	44-30	7,176 – 3,333	1,162 - 1,428
110	18-46	46-32	7,111 – 3,391	1,163 - 1,418
115	19-49	48-33	7,053 – 3,347	1,165 - 1,426
120	18-50	51-35	7,666 – 3,400	1,150 - 1,418

 Π р и н я т ы е обоз на чен и я: z_1 — число зубьев солнечного колеса (изменяется через два зуба); z_2 — число зубьев сателлита (изменяется через один зуб); z_3 — число зубьев корончатого колеса; H — водило.

Подбор чисел зубьев колес передач по схеме 3 (см. табл. 5.1). Передача по схеме 3 — однопоточная, поэтому подбор чисел зубьев колес обусловливается только соосностью двух пар колес 1-2 и 2'-3, а также выполнением заданного передаточного отношения. Если модули зацеплений обеих пар колес равны и зубья нарезаны без смещения зуборезного инструмента, то условие соосности можно выразить через числа зубьев

Зависимость чисел зубьев от передаточного отношения

$$\frac{z_2}{z_1} \frac{z_3}{z_{2'}} = \frac{i_{H1}^{(3)} - 1}{i_{H1}^{(3)}}.$$
 (5.13)

Решение этой системы уравнений дано на графиках (рис. 5.9), где по заданному передаточному отношению, задаваясь разностями чисел зубьев $z_c = z_1 - z_2 = z_3 - z_2$, и $e = z_3 - z_1 = z_2$, дожно определить значение z_3 .

По графику (рис. 5.10) можно определить минимальные значения $z_{\rm e}$ при которых не будет интерференции головок зубьев шестерни и колеса; если значение $z_{\rm e}$ меньше указанного на графике, то для устранения интерференции колеса надо нарезать со смещением зуборезного инструмента или

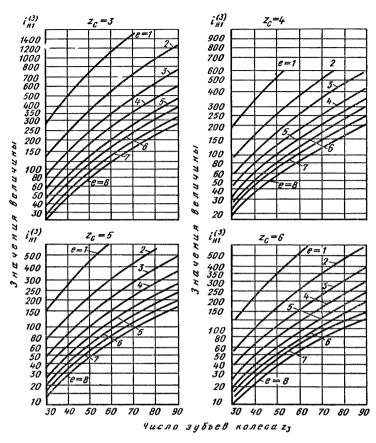
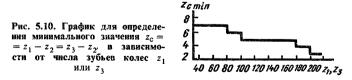



Рис. 5.9. Графики для спределсиня числа зубьев колеса 3 в передачах по схеме 3 табл. 5.1

(когда $z_c \geqslant 3$) применять зуборезный инструмент с углом профиля 30° и коэффициентом высоты головки зуба $h_a^* = 0.8$.

Пример. Подобрать числа зубьев передачи по схеме 3 с $i_{H_1}^{(3)} = 315$.

- 1. Принимаем $z_c = z_1 z_2 = z_3 z_{2'} = 4$ и $e = z_3 z_1 = z_{2'} z_2 = 5$.
 - $\bar{2}$. По графику (рис. 5.9) находим $z_3 = 84$.
 - 3. Определяем

$$z_{2'} = z_3 - z_c = 84 - 4 = 80;$$

 $z_1 = z_3 - e = 84 - 5 = 79;$
 $z_2 = z_1 - z_c = 79 - 4 = 75.$

4. Фактическое передаточное отношение

$$i_{H1}^{(3)} = \frac{1}{i_{1H}^{(3)}} = \frac{1}{1 - i_{13}^{(H)}} = \frac{1}{1 - \left(\frac{z_2}{z_1}\right)\left(\frac{z_3}{z_2}\right)} = \frac{1}{1 - \frac{75}{79} \frac{84}{80}} = 316.$$

 Отклонение фактического передаточного отношения от заданного

$$\Delta_i = \frac{i_{3a\pi} - i_{\phi a\kappa}}{i_{3a\pi}} 100 = \frac{315 - 316}{315} 100 \cong -0.32 \%.$$

§ 5.4. РАСЧЕТ ЗУБЬЕВ ПЛАНЕТАРНЫХ ПЕРЕДАЧ НА ПРОЧНОСТЬ

В планетарных передачах, где сателлит входит в зацепления с двумя центральными колесами (солнечным и корончатым) и механические характеристики материала колес примерно одинаковы, рассчитывают на прочность только внешнее зацепление (солнечное колесо — сателлит). При определении числа циклов нагружения зубьев надо учитывать только относительную частоту вращения колес, т. е. при остановленном водиле. Для передач с вращающимся центральным колесом 1 и неподвижным п относительные частоты вращения колес определяют по формулам

$$n_{1}^{(H)} = n_{1}^{(n)} - n_{H}^{(n)};$$

$$n_{n}^{(H)} = -n_{H}^{(n)};$$

$$n_{c}^{(H)} = n_{H}^{(n)} \frac{z_{n}}{z_{c}}.$$
(5.14)

В табл. 5.1 для каждой передачи приведена формула для определения относительной частоты вращения сателлита, используемая при расчете долговечности его подшипников.

Порядок расчета зубьев планетарных передач на прочность зависит от задания на проектирование. При проектировании

5.3. Формулы для расчета на прочность зубьев планетарных передач

Расчетная зависимость	Единицы измерения	№ формулы
Прочность рабочих поверхностей		
Проектировочный расчет Межосевое расстояние		
$a_w \geqslant K_a (u \pm 1) \sqrt[3]{\frac{T_2 K_{H\beta}}{n_c' [\sigma_H]^2 u^2 \psi_{ba}}}$	ММ	(5.15)
Ширина колес		
$b \geqslant \left[K_a(u \pm 1)\right]^3 \frac{T_2 K_{H\beta}}{n'_c \left(\left[\sigma_H\right] u a_w\right)^2}$	мм	(5.16)
Проверочный расчет Расчетное контактное напряжение		
$\sigma_H = Z_M Z_H Z_{\varepsilon} \sqrt{\frac{2T_2 K_{H\alpha} K_{H\beta} K_{H\nu} (u \pm 1)}{n_c^{\prime} d_2^2 b u}}$	МПа	(5.17)
$ [\sigma_H] = \frac{\sigma_{H \text{limb}} K_{HL}}{[S_H]} $	МПа	(5.18)
Изгибная прочность		
Проектировочный расчет Ширина колес		
$b \geqslant Y_F Y_{\beta} Y_{\varepsilon} \frac{2T_2 K_{F\beta}}{n'_{c} z_2 m^2 [\sigma_F]}$	мм	(5.19)
Модуль		
$m \geqslant \sqrt{\frac{2T_2Y_FY_{\beta}Y_{\varepsilon}K_{F\beta}}{n_{c}'z_2\psi_{bm}\left[\sigma_F\right]}}$	мм	(5.20)
Расчетное напряжение изгиба		
$\sigma_F = 2Y_F Y_{\beta} Y_{\epsilon} \frac{T_2 K_{F\alpha} K_{F\beta} K_{F\nu}}{n'_{c} z_2 b m^2}$	МПа	(5.21)
$[\sigma_F] = \frac{\sigma_{F \lim b} K_{FL} K_{Fc}}{[S_F]}$	МПа	(5.22)
		<u> </u>

Примечания: 1. Расшифровка обозначений параметров, их величины и размерности, кроме указанных ниже, см. в § 3.2 и 3.3.

- 2. В формулах (5.16) (5.21) знак плюс для наружного зацепления, знак минус для внутреннего.
- 3. $u=z_2/z_1$ отношение чисел зубьев большего колеса рассчитываемой пары к меньшему ($u\geqslant 1$).
- 4. T_2 вращающий момент, действующий на большее колесо рассчитываемой пары.
- 5. Приведенное число сателлитов (с учетом неравномерного распределения нагрузки между ними) $n'_{\rm c} = n_{\rm c} 0.7$.

планетарной передачи как отдельной сборочной единицы расчет следует начинать с определения межосевого расстояния из условия контактной прочности. При проектировании моторредуктора диаметр передачи определяется диаметром корпуса присоединяемого электродвигателя, поэтому расчет удобно начинать с определения ширины колес из условий контактной и изгибной прочности. Окончательная ширина колес определится после подбора подшипников сателлитов.

Формулы для расчета на прочность зубьев планетарных передач приведены в табл. 5.3.

Величины сил и вращающих моментов, действующих на звенья планетарных передач, не зависят от числа степеней свободы. В передачах с одной степенью свободы вращающий момент, действующий на неподвижное центральное колесо, уравновешивается реакциями мест закрепления.

В многопоточных передачах (рис. 5.11) в установившемся режиме работы силы в зацеплениях, действующие на центральные колеса и водило, уравновешивают друг друга, и поэтому валы нагружены только вращающим моментом. Силы зацеплений, действующие на сателлиты, приложены на диаметрально противоположных сторонах, поэтому их радиальные

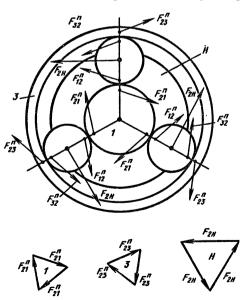


Рис. 5.11. Взаимное уравновешивание сил, действующих в многопоточных передачах

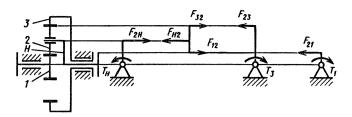


Рис. 5.12. Силовой расчет передачи по схемам 1 и 2 табл. 5.1 и рис. 5.1-5.4:

$$T_{H} = F_{2H} a_{12} n'_{c}; \quad F_{2H} = \frac{T_{H}}{a_{12} n'_{c}}; \quad F_{H2} = F_{32} + F_{12}; \quad F_{32} = F_{12} = \frac{F_{H2}}{2}; \quad T_{3} = F_{23} \frac{d_{3}}{2} n'_{c};$$

$$T_{1} = F_{21} \frac{d_{1}}{2} n'_{c}; \quad T_{H} = T_{1} + T_{3}$$

составляющие уравновешивают друг друга, а окружные складываются, так как они параллельны и направлены в одну сторону; суммарная нагрузка действует на подшипники и оси сателлитов.

При проведении силового расчета удобно пользоваться методом, представленным на рис. 5.12 и 5.13, где последовательно рассматривается равновесие каждого звена передачи. Начинать расчет следует со звена, на котором задан вращающий момент, по его значению и размерам колес находят уравновешивающую силу; затем на основании равенства действующей и противодействующей сил находят силу, действующую на звено, входящее в кинематическую пару. Далее рассматривают равновесие второго звена, находят уравновешивающую силу или момент и т. д., пока не будет рассмотрено равновесие всех звеньев передачи.

Все силы обозначены буквой F с двумя нижними цифровыми индексами: первый указывает номер звена, со стороны которого

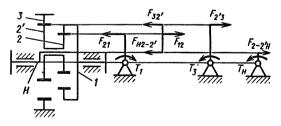


Рис. 5.13. Силовой расчет передачи по схеме 3 табл. 5.1:

$$\begin{split} F_{21} &= \frac{2T_1}{d_1}; \ F_{12} = -F_{21}; \ F_{32'} &= \frac{F_{12}d_2}{d_{2'}}; \ F_{2'3} = -F_{32'}; \\ F_{H2-2'} &= F_{12} - F_{32'}; \\ T_H &= F_{2-2'H}a_{w12}; \ T_3 = F_{2'3}\frac{d_3}{2}; \ T_1 = T_3 + T_H \end{split}$$

действует сила, второй — звено, на которое действует сила. Например, F_{12} — окружная сила, с которой колесо 1 действует на колесо 2.

Проверкой правильности силового расчета служит уравнение равновесия внешних вращающих моментов, приложенных к передаче (в том числе и опорный момент).

Пример. Для передач по рис. 5.1-5.4 определить окружные силы в зацеплениях, внешние вращающие моменты, действующие на центральные звенья, и силу, действующую на подшипник сателлита и его ось. Задан момент $T_{\rm H}$ полезного сопротивления, приложенный к водилу, размеры колес и число сателлитов $n_{\rm e}$.

1. Рассматриваем равновесие водила и находим силу F_{2H} (см. рис. 5.12)

$$T_H = F_{2H} a_{12} n'_{c};$$

 $F_{2H} = \frac{T_H}{a_{12} n'_{c}}.$

2. Рассматриваем равновесие сателлита, который входит в кинематические пары с водилом и центральными колесами 1 и 3, и находим силы F_{12} и F_{32}

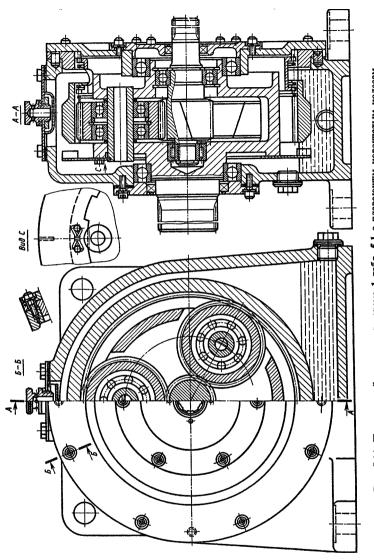
$$\overline{F}_{H2} = \overline{F}_{12} + \overline{F}_{32}; \ \overline{F}_{H2} = -\overline{F}_{2H}.$$

Условие равенства моментов сил относительно оси сателлита

$$F_{32} \frac{d_2}{2} = F_{12} \frac{d_2}{2};$$

$$F_{32} = F_{12}; \ F_{12} = F_{32} = \frac{F_{H2}}{2}.$$

3. Рассматриваем равновесие центрального колеса 3 и находим вращающий момент


$$T_3 = F_{23} \frac{d_3}{2} n'_{c}; \ \overline{F}_{23} = -\overline{F}_{32}.$$

Для передачи по рис. 5.2 момент T_3 — ведущий, для передачи по рис. 5.3 — полезного сопротивления, для передачи по рис. 5.1 — опорный.

4. Рассматриваем равновесие центрального колеса 1 и находим момент

$$T_1 = F_{21} \frac{d_1}{2} n'_{c}; \ \overline{F}_{21} = -\overline{F}_{12}.$$

Вращающий момент T_1 в рассматриваемом примере для передачи по рис. 5.1, 5.2, 5.3 — движущий (без учета потерь).

Рис, 5.14. Планегарный редуктор по схеме 1 табл. 5.1 с плавающим корончатым колесом

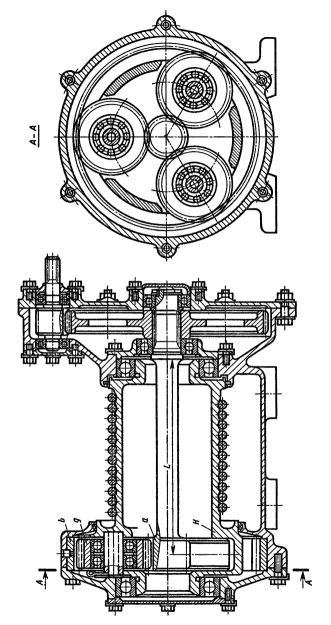


Рис. 5.15. Лебедка с планетарным редуктором по схеме 1 табл. 5.1

С учетом потерь движущий момент $T_1' = T_1/\eta$, где $\eta - K\Pi \mathcal{J}$ передачи (см. табл. 5.1).

На рис. 5.13 приведен пример силового расчета передачи по схеме 3 для случая, когда задан вращающий момент (момент полезного сопротивления) на ведомом колесе 1.

§ 5.5. КОНСТРУКЦИИ ПЛАНЕТАРНЫХ ПЕРЕДАЧ

Конструкции планетарных передач зависят от выбранной кинематической схемы, величины передаваемого вращающего момента и срока службы. Для получения меньших габаритов силовые передачи выполняют многопоточными (обычно трехпоточными). Следует назначать нечетное число сателлитов для лучшего уравновещивания сил в зацеплениях.

Конструкции центральных колес. Для равномерного распределения нагрузки между сателлитами силовых многопоточных передач одно или оба центральных колеса делают самоустанавливающимися (плавающими) (рис. 5.14). В передачах, имеющих большие габариты, плавающим делают оба центральных колеса; самоустановка достигается применением зубчатых муфт, соединяющих солнечные колеса с ведущим валом или водилом предыдущей ступени, а корончатые колеса с корпусом или замыкающей передачей.

В конструкциях на рис. 5.15—5.17 самоустановка достигается применением гибких элементов. На рис. 5.15 солнечное колесо расположено консольно на длинном гибком валу. На рис. 5.16 в конструкцию корончатого колеса включена гибкая оболочка. На рис. 5.17 сателлит установлен на гибкой оси.

Для равномерного распределения нагрузки между сателлитами возможен и другой путь — жесткая установка всех деталей передачи при условии высокой точности их изготовления и монтажа (рис. 5.18). Жесткие корончатые колеса могут быть нарезаны непосредственно на корпусе, запрессованы в корпус или установлены в разъеме фланцев (рис. 5.19).

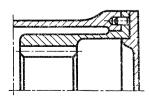


Рис. 5.16. Конструкции корончатого колеса с гибкой оболочкой

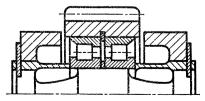


Рис. 5.17. Конструкция сателлита с гибкой осью

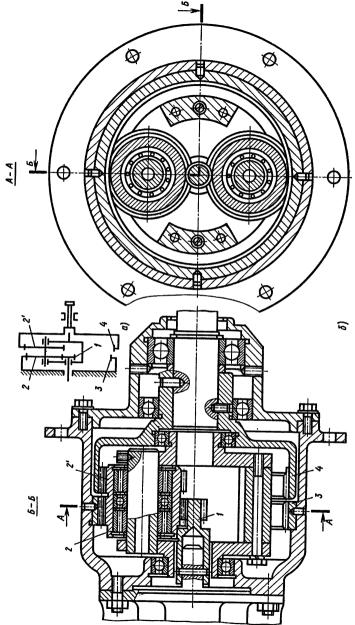


Рис. 5.18. Планетарный редуктор по схеме 5 табл. 5.1 с жестко установленными центральными колесами: а – кинематическая схема; б – общий вид

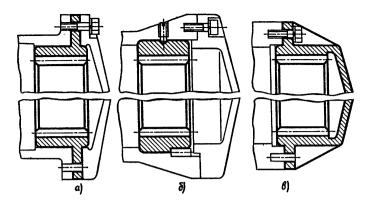
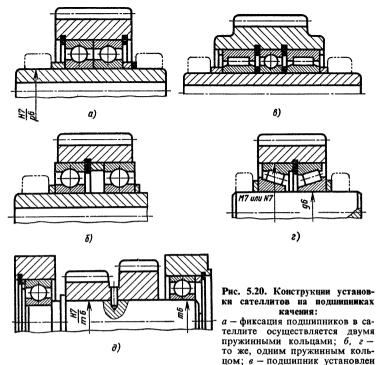


Рис. 5.19. Жесткая установка корончатых колес: a-в разъеме фланцев; b-в запрессовкой в корпус; b-в на корпусе


Конструкции сателлитов. Сателлиты обычно делают с внутренней расточкой под подшипники качения. Для самоустановки применяют сферические подшипники. Максимальный диаметр наружного кольца подшипника

$$D_{\max} = m(z - 7), \tag{5.23}$$

где *т* — модуль колеса передачи; *г* — число зубьев сателлита. Устанавливать сателлит на двух или трех подшипниках часто приходится для получения заданного срока службы передачи (рис. 5.20). При малых диаметрах сателлитов подшипники устанавливают в щеках водила (рис. 5.20, д) или применяют подшипники без колец. При невозможности обеспечить заданную долговечность подшипниками качения сателлиты устанавливают на подшипниках скольжения.

Сателлиты с двумя венцами обычно делают сборными (рис. 5.21), что позволяет уменьшить массу заготовок и сократить время механической обработки. Сдвоенные сателлиты, устанавливаемые в одну передачу, должны иметь одинаковое относительное расположение зубьев венцов. Для этого их собирают в специальных приспособлениях или применяют конструкции, позволяющие устанавливать взаимное расположение венцов при сборке (рис. 5.22). Делать сдвоенные сателлиты одной деталью следует только в тех случаях, когда их диаметры мало отличаются друг от друга.

Конструкции водил. Водила одноступенчатых передач и последней ступени многоступенчатых часто делают за одно пелое

на двух игольчатых и одном шариковом подшипниких; ∂ — подшипники установлены в шеках водила

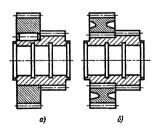


Рис. 5:21. Сборная конструкция сателлитов с двумя венцами без регулировки их относительного расположения:

a — соединение венцов шпонкой и посадкой с натягом; δ — шлицевое соединение венцов

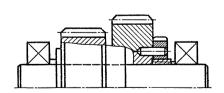


Рис. 5.22. Сборная конструкция сателлитов с двумя венцами с регулировкой их относительного расположения

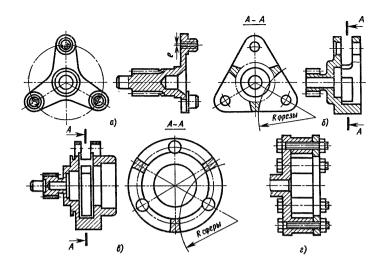


Рис. 5.23. Конструкции водил: a-c консольным расположением осей сателлитов, заготовка—поковка, b-c

оси сателлитов имеют по две опоры, заготовка – поковка, ε – оси сателлитов имеют по две опоры, заготовка – круглый прокат; ε – сборная конструкция водила

с ведомым валом (см. рис. 5.14), реже — раздельно. Водила первой и промежуточных ступеней многоступенчатых передач, когда не требуется самоустановки, делают за одно целое с солнечным колесом следующей ступени (рис. 5.23). Если солнечное колесо самоустанавливающееся, то его соединяют с водилом зубчатой муфтой. Для упрощения формы заготовки и механической обработки водила часто делают сборными.

Конструкции корпусов. Корпуса планетарных передач в серийном производстве изготовляют литыми из серого чугуна, алюминиевого сплава или стали; корпус редуктора устанавливают на плите или раме на лапах, отливаемых вместе с корпусом (см. рис. 5.14); отдельные части корпуса соединяют фланцами, имеющими центрирующие выступы и проточки; стягивают фланцы болтами, винтами или шпильками. Корпуса мотор-редукторов без лап соединяют с электродвигателем и механизмом фланцами с центрирующими выступами и проточками (см. рис. 5.18).

Для закрепления строп на корпусе редуктора служат проушины или крюки, отливаемые вместе с корпусом, или предусматривают бобышки с резьбовыми отверстиями для установки грузовых винтов.

§ 5.6. СМАЗЫВАНИЕ ПЛАНЕТАРНЫХ ПЕРЕДАЧ

В планетарных передачах применяют два способа смазывания: окунание колес в масляную ванну и циркуляционный. Первый способ применяется при условии, что окружная скорость сателлита в месте зацепления с корончатым колесом

$$v = \omega_H \frac{d_3}{2 \cdot 10^3} \le 5 \text{ M/c},$$

где ω_H — угловая скорость водила, рад/с; d_3 — диаметр корончатого колеса, мм.

Объем масляной ванны в пределах 0.3-0.5 л на 1 кВт передаваемой мощности; в редукторах транспортных машин значительно меньше (до 0.03 л на 1 кВт).

При v > 3 м/с смазывание подшипников качения сателлитов и центральных колес обеспечивается разбрызгиванием масла. При меньших значениях v для смазывания подшипников применяют пластичные смазочные материалы, закладываемые при сборке в полости подшипников, в которые устанавливают мазеудерживающие шайбы.

Для того чтобы продукты износа могли осесть на дно масляной ванны, расстояние от него до наиболее погруженной вращающейся поверхности должно быть не менее 20 мм, а при значении модуля более 4 мм — порядка 5—8 модулей.

Для предотвращения застоя разбрызгиваемого масла в полостях подшипниковых узлов и в колесах с внутренними зубьями необходимо делать дренажные отверстия.

Уровень масла проверяют контрольными резьбовыми пробками, устанавливаемыми в корпусе на высотах, соответствующих максимальному и минимальному уровням масла; крановыми маслоуказателями, щупами или масломерными стеклами. Сливают отработавшее масло через отверстие, закрываемое резьбовой пробкой. Форма дна и расположение отверстия должны обеспечивать полный слив масла.

Циркуляционную систему смазывания применяют в редукторах большой мощности, где смазывание окунанием не обеспечивает подвод масла к трущимся поверхностям. В системе смазывания устанавливают в редукторе масляный насос, фильтры, редукционный клапан, холодильник и измерительные приборы. Производительность насоса определяют тепловым расчетом редуктора. Ориентировочно принимают ее при $v \le 10 \, \text{м/c} - 1 \, \text{л/мин}$ на $10 \, \text{мм}$ ширины венца, при $v > 10 \, \text{м/c} - 2 \, \text{л/мин}$. Общий объем масла в системе должен быть не менее трехминутного расхода. Масло в зацепление

подается форсунками на торцы колес или через осевое и радиальные отверстия в солнечном колесе, выходящие во впадины зубьев.

Давление масла в системе 0,02-0,15 МПа. Масло к подшипникам сателлитов подается через осевое и радиальные отверстия в водиле и далее через осевое и радиальные отверстия в оси сателлита.

Для смазывания планетарных редукторов используют нефтяные масла с присадками, улучшающими их свойства (см. гл. IX, § 9.6).

§ 5.7. ПРИМЕР РАСЧЕТА ПЛАНЕТАРНОЙ ПЕРЕДАЧИ

Исходные данные: вращающий момент на ведомом валу $T_H = 290~{\rm H\cdot m}$; частота вращения ведомого вала $n_H = 360$ об/мин; тип передачи — редуктор с приводом от трехфазного асинхронного четырехполюсного электродвигателя; частота вращения ведущего вала (асинхронная) $n_1 = 1450$ об/мин; срок службы редуктора 5 лет по 300 рабочих дней в году, в одну смену по 8 ч.

Порядок расчета. (Термины и обозначения такие же, как в гл. III).

1. Определяем передаточное отношение

$$i = \frac{n_1}{n_H} = \frac{1450}{360} = 4,02.$$

По ГОСТ 2185-66 (см. с. 36) ближайшее значение i=4.

- 2. Выбираем по табл. 5.1 кинематическую схему 1 с передаточным отношением $i_{1H}^{(3)} = 4$.
- 3. Принимаем число сателлитов (из условия уравновениивания сил в зацеплении) $n_c = 3$.
 - 4. Выбираем число зубьев солнечного колеса $z_1 = 30$.
 - 5. Определяем число зубьев сателлита по формуле (5.2)

$$z_2 = 0.5z_1 (i_{1H}^{(3)} - 2) = 0.5 \cdot 30(4 - 2) = 30.$$

6. Проверяем выполнение условия вхождения зубьев в зацепление по формуле (5.10)

$$\frac{2(z_1+z_2)}{n_c}=\frac{2(30+30)}{3}=40$$
 — целое число, условие выполнено.

7. Проверяем выполнение условия соседства по формуле (5.9)

$$(z_1+z_2)\sin\frac{\pi}{n_c}\geqslant z_1+2;$$

$$(z_1 + z_2) \sin \frac{\pi}{n_c} = (30 + 30) \, 0.866 \approx 52;$$

 $z_2 + 2 = 30 + 2 = 32; \, 52 > 32.$

Условие выполнено.

8. Определяем число зубьев корончатого колеса из условия соосности по формуле (5.2)

$$z_3 = z_1 + 2z_2 = 30 + 2 \cdot 30 = 90.$$

9. Выбираем для зубчатых колес сталь 40ХН, улучшенную, средняя твердость *НВ* 280 (см. табл. 3.3 гл. III); базовое число циклов перемены напряжений (по табл. 3.2 гл. III)

$$N_{H0} = 2.3 \cdot 10^7$$
.

10. Определяем рабочее число циклов перемены напряжений для солнечного колеса за весь срок службы $t = 5 \cdot 300 \cdot 8 = 12 \cdot 10^3$ ч по формуле

$$N_H = 60n_c n_t^{(H)} t = 60 \cdot 3 \cdot 1090 \cdot 12 \cdot 10^3 = 235 \cdot 10^7.$$

Здесь $n_1^{(H)} = n_1^{(3)} - n_H^{(3)} = 1450 - 360 = 1090$ об/мин.

- 11. Так как $N_H > N_{H0}$, то принимаем коэффициент долговечности $K_{HL} = 1$ [см. пояснение к формуле (3.9)].
- 12. Определяем межосевое расстояние между солнечным колесом и сателлитом по формуле (5.15) табл. 5.3

$$a_w \geqslant K_a(u+1) \sqrt[3]{\frac{T_2 K_{H\beta}}{n_c' \lceil \sigma_H \rceil^2 u^2 \psi_{ba}}}$$

входящие в нее величины имеют значения:

- а) для передач цилиндрическими прямозубыми колесами $K_a = 49,5;$
 - б) передаточное число $u = \frac{z_2}{z_1} = \frac{30}{30} = 1;$
 - в) вращающий момент, Н мм,

$$T_2 = \frac{T_H}{i_H^{(3)}} = \frac{290 \cdot 10^3}{4} = 72,5 \cdot 10^3;$$

- г) коэффициент концентрации нагрузки по табл. 3.1 гл. III $K_{H8}=1,2;$
 - д) расчетное число сателлитов $n'_c = n_c 0.7 = 3 0.7 = 2.3$;
- е) допускаемое контактное напряжение по формуле (3.9) гл. III

$$[\sigma_H] = \frac{\sigma_{H \lim b} K_{HL}}{[S_H]} = \frac{630 \cdot 1}{1.15} = 550 \text{ M}\Pi a.$$

Здесь $\sigma_{H \, lim\, b}$ предельное значение контактной выносливости; по табл. 3.2, гл. III

$$\sigma_{H \text{ lim} b} = 2HB + 70 = 2 \cdot 280 + 70 = 630 \text{ M}\Pi a.$$

Коэффициент долговечности $K_{HL} = 1$ (см. п. 11).

Коэффициент безопасности $[S_H] = 1,1 \div 1,2$ для колес из улучшенной стали, принимаем среднее значение $[S_H] = 1,15$.

Коэффициент ширины сателлита принимаем $\psi_{ba} = 0.5$.

После подстановки приведенных величин в формулу (5.15) имеем

$$a_w \ge 49.5 (1+1) \sqrt[3]{\frac{72.5 \cdot 10^3 \cdot 1.2}{2.3 \cdot 550^2 \cdot 1 \cdot 0.5}} \approx 60 \text{ mm}.$$

Определяем модуль зацепления на основании формулы (3.14) гл. III

$$m = \frac{2a_{w12}}{z_1 + z_2} = \frac{2 \cdot 60}{30 + 30} = 2$$
 MM.

14. Определяем диаметры делительных окружностей колес и ширину, мм .

$$d_1 = mz_1 = 2 \cdot 30 = 60;$$

 $d_2 = mz_2 = 2 \cdot 30 = 60;$
 $d_3 = mz_3 = 2 \cdot 90 = 180;$
 $b = \psi_{ha}a_{w12} = 0.5 \cdot 60 = 30.$

15. Выполняем проверочный расчет зубьев на изгиб по формуле (5.21) табл. 5.3. Последовательность расчета сходна с изложенной выше. Значения коэффициентов определяют по ГОСТ 21354-75 (см. гл. III).

Не воспроизводя всех выкладок, приводим результат: расчетное напряжение изгиба, МПа

$$\sigma_{F_{s}} = 2Y_{F}Y_{\beta}Y_{\varepsilon} \frac{T_{2}K_{F\alpha}K_{F\beta}K_{F\nu}}{n'_{c}z_{2}bm^{2}} =$$

$$= 2 \cdot 3.8 \cdot 0.6 \cdot 1 \frac{72.5 \cdot 10^{3} \cdot 1 \cdot 1.5 \cdot 1.2}{2.3 \cdot 30 \cdot 30 \cdot 2^{2}} \approx 72 \text{ M}\Pi\text{a}.$$

Сравним с допускаемым напряжением

$$[\sigma_F] = \frac{\sigma_{F \lim b} K_{FL} K_{Fc}}{[S_F]} = \frac{555 \cdot 1 \cdot 1.5}{1.8} = 465 \text{ M}\Pi a.$$

Условие прочности $\sigma_F < [\sigma_F]$ выполнено.

Расчет осей и валов выполняют по методике, изложенной в гл. VIII, подшипники подбирают по указаниям гл. IX.

глава **VI**

ВОЛНОВЫЕ ЗУБЧАТЫЕ ПЕРЕДАЧИ

§ 6.1. ОБЩИЕ СВЕДЕНИЯ

Кинематическая схема волновой передачи показана на рис. 6.1: ведущее звено — генератор деформации h; ведомое — гибкая цилиндрическая оболочка с зубчатым венцом 2, имеющая общую геометрическую ось с жестким корончатым колесом 1 и генератором h. Вращающийся генератор растягивает венец 2 в радиальном направлении, волны деформации бегут по венцу и создают несколько зон зацепления с корончатым колесом 1.

Наиболее распространены генераторы, создающие две волны деформации и соответственно две зоны зацепления (см. рис. 6.1). Типовые схемы генераторов показаны на рис. 6.2: a — двухроликовый, создает две волны деформации; b — четырехроликовый, но создает также две волны деформации; такие схемы применяют при малых нагрузках и небольших частотах вращения генератора; b — многороликовый генератор, создает заданную форму деформации гибкого венца по всему периметру, применяется в передачах большого диаметра; b — дисковый генератор, создает две волны деформации в местах прилегания диска к гибкому венцу; упругая кривая гибкого венца имеет форму дуг окружности; b — кулачковый генератор,

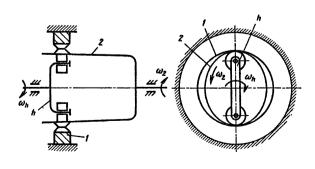
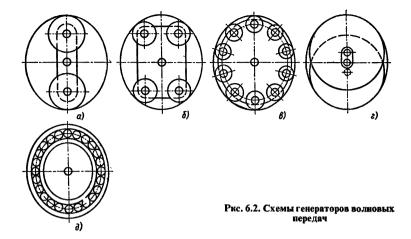



Рис. 6.1: Волновая передача

представляет собой кулачок с надетым на него гибким подшипником; такой генератор применяют в передачах любого назначения.

Для передачи вращения с гибкого колеса 2 на ведомый вал гибкую оболочку соединяют с фланцем ведомого вала болтами, сваркой или шлицами (рис. 6.3).

Зацепление гибкого колеса с жестким в нескольких зонах повышает нагрузочную способность, кинематическую точность и КПД по сравнению с аналогичными показателями планетарных передач.

Передаточное отношение волновых передач определяют по таким же формулам, что и для планетарных с ведущим води-

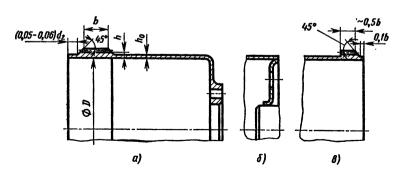


Рис. 6.3. Способы крепления гибкой оболочки к ведомому валу: a — винтами (болтами, шпильками); b — сваркой; b — шлицевым соединением

6.1. Кинематические схемы наиболее распространенных волновых передач и их основные параметры

<u>. </u>	k					
-№ cxe- мы	Кинематическая схема передачи	Передаточное отношение и его рациональные пределы	КПД и его ориентировочные предельные значения			
1		$i_{h2}^{(1)} = 70 \div 300;$ $i_{h2}^{(1)} = -\frac{z_2}{z_1 - z_2};$ $z_1 - z_2 = kn_w$	$\eta_{h2}^{(1)} = 0.91 \div 0.71;$ $\eta_{h2}^{(1)} = \frac{1 - \psi_{12}^{(h)}}{1 + i_{h2}^{(1)} \psi_{12}^{(h)} }$ $\psi_{12}^{(h)} = 0.00137$			
2		$i_{h1}^{(2)} = 70 \div 300;$	$\eta_{h1}^{(2)} = 0.91 \div 0.71;$ $\eta_{h1}^{(2)} = \frac{1}{1 - \psi_{h1}^{(2)}(1 - i_{h1}^{(2)})};$			
2a	лерметизированнае пространства	$i_{h1}^{(2)} = \frac{z_1}{z_1 - z_2};$ $z_1 - z_2 = kn_w$	$1 - \psi_{12}^{(h)}(1 - i_{h1}^{(2)}),$ $\psi_{12}^{(h)} \cong 0,00137$			
3		$i_{h1}^{(3)} = 300 \div 6000;$ $i_{h1}^{(3)} = \frac{z_1 z_2}{z_1 z_2, -z_2 z_3};$ $z_1 - z_2 = z_3$ $- z_2 = k n_w$	$ \eta_{h1}^{(3)} = 0,55 \div 0,07; \eta_{h1}^{(3)} = \frac{1}{1 + \psi \binom{h}{13} \binom{h}{13} - 1}; \psi_{13}^{(h)} = 0,00274 $			

[;] Примечание. В приведенных формулах верхний индекс, стоящий в скобках при i, η и ψ , обозначает неподвижное звено. Первый нижний индекс обозначает ведущее звено, второй — ведомое.

$$i_{hk}^{(n)} = \frac{1}{i_{hk}^{(n)}} = \frac{1}{1 - i_{hk}^{(h)}}, \tag{6.1}$$

где h — генератор волновой деформации (ведущее звено); k — веломое колесо: n — неподвижное колесо.

Для передачи по рис. 6.1 и схеме 1 табл. 6.1

$$i_{h2}^{(1)} = \frac{1}{i_{2h}^{(1)}} = \frac{1}{1 - i_{21}^{(h)}} = \frac{1}{1 - \frac{z_1}{z_2}} = -\frac{z_2}{z_1 - z_2}$$
(6.2)

Собираемость этой волновой передачи обеспечивается выполнением единственного условия — вхождением зубьев гибкого колеса во впалины жесткого во всех зонах запепления:

$$z_1 - z_2 = k n_w, (6.3)$$

где n_w — число зон зацепления (волн деформации), создаваемых генератором (обычно $n_w = 2$); k — коэффициент кратности k = 1; 2; 3; ... Для снижения напряжения в гибком колесе обычно принимают k = 1.

Из формул (6.2) и (6.3) следует

$$i_{h2}^{(1)} = \frac{z_2}{kn_{m}}. (6.4)$$

Число зубьев z_2 гибкого колеса 2 (при заданном значении $i_{h2}^{(1)}$ и выбранных значениях k и n_w)

$$z_2 = i_{h2}^{(1)} k n_w. (6.5)$$

Интервал значений z_2 от 150 до 600. Число зубьев жесткого колеса

$$z_1 = z_2 + k n_w. ag{6.6}$$

Основные кинематические схемы волновых передач и их параметры приведены в табл. 6.1. Наиболее распространена схема 1; на рис. 6.4 показана одна из конструкций такой передачи.

В передаче по схеме 2 гибкое колесо 2 — неподвижное, а жесткое колесо 1 вращается. Передаточное отношение

$$i_{h1}^{(2)} = \frac{z_1}{z_1 - z_2}. (6.7)$$

Схему 2а (табл. 6.1 и рис. 6.5) рационально применять для передачи вращения в герметизированное пространство. Передаточное отношение определяется по формуле (6.7).

Волновая передача с двухвенцовой короткой гибкой обо-

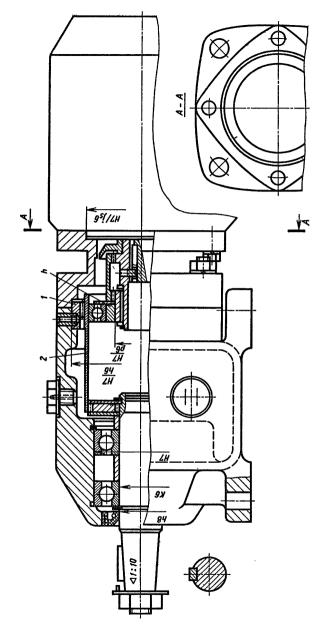


Рис. 6.4. Мотор-редуктор, выполненный по схеме 1 табл. 6.1: I — неподвижное жесткое колесо; 2 — ведомое гибкое колесо; h — генератор

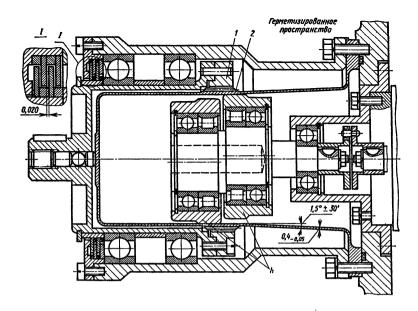


Рис. 6.5. Мотор-редуктор, выполненный по схеме 2а табл. 6.1: I — ведомое жесткое колесо; 2 — неподвижное гибкое колесо; h — дисковый генератор

лочкой 2-2', неподвижным жестким колесом 3 и ведомым жестким колесом 1 показана на рис. 6.6 и на схеме 3 табл. 6.1. Эта передача аналогична планетарной по схеме 3 табл. 5.1. Передаточное отношение

$$i_{h1}^{(3)} = \frac{z_1 z_2}{z_1 z_2 - z_2 z_3}.$$
 (6.8)

В этой передаче условия соосности и вхождения зубьев в зацепление (при равных значениях модулей в обеих парах) определяются одним условием

$$z_1 - z_2 = z_3 - z_{2'} = k n_{w}. ag{6.9}$$

Обозначим разности

$$z_3 - z_1 = z_{2'} - z_2 = \Delta. ag{6.10}$$

Из формул (6.8), (6.9) и (6.10) следует

$$\Delta = \frac{z_2 + k n_w}{\frac{k n_w}{z_2} (i_{h1}^{(3)} - 1) - 1}$$
 (6 11)

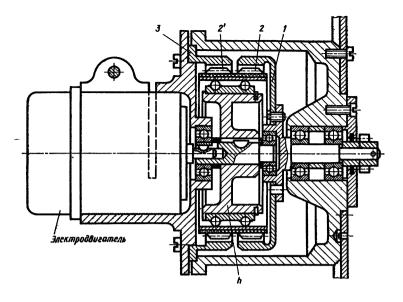


Рис. 6.6. Мотор-редуктор, выполненный во схеме 3 табл. 6.1: 1 — ведомое жесткое колесо; 2-2' — короткое гибкое колесо с двумя зубчатыми венцами; 3 — неподвижное жесткое колесо; h — кулачковый генератор

В этой формуле величина $i_{h1}^{(3)}$ содержится в исходных данных, z_2 выбирают в пределах 150—600, значения k и n_w приведены в пояснении к формулам (6.3) и (6.5). Вычислив Δ по формуле (6.11), определяют числа зубьев остальных колес: $z_1=z_2+kn_w$; $z_2=z_2+\Delta$; $z_3=z_2+kn_w$. После необходимых округлений уточняют передаточное отношение. Если отклонение его от заданного больше допускаемого, то выбирают другое значение z_2 и повторяют расчет.

Передача по схеме 3 имеет значительно меньшие осевые габариты по сравнению с другими волновыми передачами, но меньшие значения КПД и нагрузочной способности. Рациональная область применения их — приводы кратковременного включения систем управления с передаточным отношением 300-6000. Передачу по схеме 3 можно преобразовать в передачу по схеме 2, сделав равными числа зубьев гибкого венца 2' и неподвижного жесткого корончатого колеса $3(z_2 = z_3)$. В этом случае вместо зацепления колес 2' и 3 получится шлицевое соединение; осевые габариты такой передачи меньше, чем у передачи по схеме 2, но КПД и нагрузочная способность ниже.

§ 6.2. РАСЧЕТ ВОЛНОВОЙ ЗУБЧАТОЙ ПЕРЕДАЧИ

Проектировочный расчет начинают с определения чисел зубьев колес, порядок которого для различных схем передач изложен ниже. Далее рассчитывают передачу на прочность и долговечность.

Волновые зубчатые передачи обычно выходят из строя из-за износа рабочих поверхностей зубьев или усталостной поломки гибкого колеса. В передачах с кулачковыми генераторами и гибкими подшипниками причинами выхода из строя могут быть усталостные поломки колец подшипника, сепаратора или усталостное выкрашивание поверхностей беговых дорожек колец и тел качения.

В передачах с роликовыми и дисковыми генераторами следует проверять долговечность подшипников качения роликов или дисков.

Предварительные значения параметров стального гибкого колеса определяют по эмпирическим формулам:

делительный диаметр, мм

$$d_2' \ge 1,66 \sqrt[3]{T_2},$$
 (6.12)

где T_2 — вращающий момент на ведомом валу, $\mathbf{H} \cdot \mathbf{m}\mathbf{m}$; толщина гибкого колеса под зубьями, $\mathbf{m}\mathbf{m}$, из условия его изгибной прочности

$$h' = 0.01d_2'; (6.13)$$

внутренний диаметр гибкого колеса, мм

$$D' = m'(z_2' + 3.4) > d_2', (6.14)$$

где m' и z'_2 — предварительные значения модуля $\left(m' = \frac{d'_2}{z'_2}\right)$ и числа зубьев гибкого колеса $(z'_2 = i^{(1)}_{h^2}kn_w)$.

Формула (6.14) выведена с учетом большого коэффициента смещения производящего контура, порядка 3 и выше.

В случае применения кулачкового генератора с гибким подшипником значение D' уточняется после выбора подшипника.

Наружный диаметр кольца гибкого подшипника выбирают из условия обеспечения заданной долговечности [14]

$$D \geqslant 2,26 \left(\frac{T_2}{10^3}\right)^{0,36} \left[L_h \left(n_h - n_2\right)\right]^{0,12},\tag{6.15}$$

где T_2 – вращающий момент на гибком колесе. Н \cdot мм; $L_{\rm h}$ –

заданная долговечность, ч; n_h — частота вращения генератора, об/мин; n_2 — частота вращения ведомого колеса, об/мин.

При окончательном выборе внутреннего диаметра гибкого колеса принимают $D \geqslant D'$.

По полученному значению внутреннего диаметра гибкого колеса (равному диаметру наружного кольца гибкого поднипника) уточняют значение модуля передачи

$$m=\frac{D}{z_2'+3,4}.$$

Окончательно выбирают ближайшее значение по ГОСТ 9563-60* (см. с. 36). Число зубьев гибкого колеса, соответствующее принятым значениям m и D,

$$z_2 = \frac{D}{m} - 3.4. \tag{6.16}$$

Принимают ближайшее меньшее четное значение. Окончательное число зубьев жесткого колеса

$$z_1 = z_2 + kn_w. (6.17)$$

Далее уточняют передаточное отношение и определяют отклонение его от заданного. Оно должно быть в пределах допускаемого.

Определение коэффициентов смещения производящего контура. Для устранения интерференции зубьев гибкого и жесткого колес их нарезают со смещением зуборезного инструмента (производящего контура): коэффициент смещения

для гибкого колеса
$$x_2 = 3 + 0.01z_2;$$
 для жесткого колеса
$$x_1 = x_2 - 1 + K_w (1 + 5 \cdot 10^{-5} K_w z_2),$$
 (6.18)

где K_w — коэффициент радиальной деформации гибкого колеса, $K_w = \frac{w}{m}$; w — максимальная радиальная деформация гибкого колеса в рассматриваемом сечении, $K_w = 1 \div 1,2$.

Размеры колес. Диаметр делительной окружности гибкого колеса

$$d_2 = mz_2$$
.

Диаметр окружности вершин зубьев гибкого колеса

$$d_{a2} = d_2 + 2(x_2 + K_F) m, (6.19)$$

где K_F — коэффициент головки зуба гибкого колеса

Диаметр окружности впадин зубьев гибкого колеса

$$d_{f2} = d_2 + 2(x_2 - h_{a0}^* - c^*) m, ag{6.20}$$

где h_{a0}^* — коэффициент высоты головки производящего контура; c^* — коэффициент радиального зазора производящего контура [14].

Ширина зубчатого венца гибкого колеса

$$b_2 = d_2 \psi_{bd}$$
; $\psi_{bd} = 0.15 \div 0.25$.

Диаметр делительной окружности жесткого колеса

$$d_1 = mz_1$$
.

Диаметр окружности вершин зубьев жесткого колеса

$$d_{a1} = d_1 + 2(x_1 - h_{a0}^*) m. (6.21)$$

Ниаметр впадин зубьев жесткого колеса

$$d_{f,1} = d_1 + 2h_1.$$

Высота зубьев

$$h_1 = a_0 - \frac{d_{a1} - d_{a0}}{2}, (6.22)$$

где a_0 — межосевое расстояние в станочном зацеплении; d_{a0} — диаметр окружности вершин зубъев долбяка.

КПД передачи. Ориентировочные значения КПД и формулы для его определения приведены в табл. 6.1.

Проверочный расчет на прочность гибкого колеса. Проверка коэффициента запаса по нормальным напряжениям:

$$S_{\sigma} = \frac{\sigma_{-1}}{\frac{k_{\sigma}\sigma_{a}}{\varepsilon_{\sigma}\beta_{\sigma}} + 0.2\sigma_{m}} \geqslant [S_{\sigma}], \tag{6.23}$$

где σ_{-1} — предел выносливости материала гибкого колеса при симметричном цикле изгиба; k_{σ} — коэффициент, учитывающий отличие теоретических коэффициентов концентрации от эффек-

тивных;
$$k_{\sigma} = \left(1 + \frac{A_{\sigma}}{\sigma_{-1}}\right)^{-1}$$
.

Значения коэффициента A_{σ} в зависимости от числа зубьев гибкого колеса z_2 :

$$z_2$$
 150 200 300 400 500 600 A_{σ} , M Π a 56,5 57,2 55,5 50,8 45 38,5

6.2. Значения коэффициентов k_{τ} , $\beta \sigma$ и β_{τ} для фрезерованных зубьев в зависимости от предела прочности материала гибкого колеса

TC	σ _B , Mila				
Коэффициент	700	800	900	1000	1200
$k_{\tau} \\ \beta_{\sigma}; \beta_{\tau}$	1,49 0,88	1,52 0,85	1,55 0,82	1,58 0,78	1,60 0,72

 ε_{σ} — коэффициент, учитывающий диаметр колеса; ориентировочно принимают $\varepsilon_{\sigma}=1,0;$ β_{σ} — коэффициент, учитывающий состояние поверхности. Значения β_{σ} см. в табл. 6.2; σ_{a} — амплитуда цикла нормальных напряжений,

$$\sigma_a = 0.35\sigma_{\text{H}} + 4.93 \frac{Ehm}{\rho^2}.$$
 (6.24)

Местные напряжения изгиба зубьев, МПа

$$\sigma_{\rm u} = 632 \mu Y_2 \sqrt{\frac{T_2 \sin 2\alpha}{d_2^3 K_L}},$$
(6.25)

коэффициент μ учитывает снижение неравномерности распределения давления по длине зубьев вследствие износа и деформации гибкого колеса, $\mu = 0.5 \div 0.6$; значения коэффициента формы зуба Y_2 см. в табл. 6.3; T_2 – вращающий момент на

6.3. Значения коэффициента Y_F в зависимости от числа зубьев и коэффициента радиального зазора

Число зубьев z ₂ гибкого колеса	c* = 0,25	$c^* = 0.35$	$c^* = 0,50$
150 200	1,35 1,39	1,38 1,42	1,46 1,46
300 400	1,44 1,50	1,48 1,52	1,54 1,60
500	1,54	1,57	1,63
600	1,57	1,61	1,67

гибком колесе, $\mathbf{H} \cdot \mathbf{m}\mathbf{m}$; $\alpha - \mathbf{y}$ гол зацепления, $\alpha = \arccos \frac{0,47z_2}{0,51z_2+3}$; $d_2 - \mathbf{g}$ диаметр делительной окружности гибкого колеса, мм; $K_L - \mathbf{g}$ относительная длина гибкой оболочки, $K_L = \frac{L}{d_2} = 0.8 \div 1.0$; $E - \mathbf{m}$ одуль упругости. Для стали $E = 2.1 \cdot 10^5$, МПа; $h - \mathbf{r}$ олецина стенки гибкого колеса под зубьями, мм,

$$h = m [0.51z_2 + 3 - (h_a^* + c^*)] - 0.5D,$$
 (6.26)

где h_a^* — коэффициент высоты головки исходного контура $(h_a^*=1)$; c^* — коэффициент радиального зазора исходного контура $(c^*=0.25)$; ρ — радиус кривизны срединной поверхности недеформированного гибкого колеса, $\rho=0.5\,(D+h)$; σ_m — среднее напряжение цикла нормальных напряжений, МПа,

$$\sigma_{m} = 0.35\sigma_{u} + 0.214 \frac{Ehm}{\rho^{2}}.$$
 (6.27)

Проверка коэффициента запаса по касательным напряжениям

$$S_{\tau} = \frac{\tau_{-1}}{\frac{k_{\tau}\tau_{a}}{\varepsilon_{\tau}\beta_{\tau}}} \geqslant [S_{\tau}], \tag{6.28}$$

где τ_{-1} — предел выносливости материала гибкого колеса при симметричном цикле кручения; k_{τ} — коэффициент концентрации напряжений. Значения k_{τ} см. в табл. 6.2; τ_a — амплитуда циклов касательных напряжений,

$$\tau_a = \frac{0.1 (1 - R_v) T_2}{h_0 \rho_0^2}; \tag{6.29}$$

здесь R_{τ} — коэффициент асимметрии цикла касательных напряжений. При реверсивной нагрузке $R_{\tau}=-1$, при нереверсивной $R_{\tau}=0$; h_0 и ρ_0 — толщина стенки и радиус кривизны срединной поверхности гибкого колеса в гладкой части, $h_0\approx 0.6h$; $\rho_0=0.5\,(D+h_0)$; ϵ_{τ} — коэффициент, учитывающий диаметр колеса.

Значения $\varepsilon_{\rm t}$ в зависимости от наружного диаметра гибкого колеса, примыкающего к венцу ($d_{\rm H}=D+2h_0$):

$$d_{\rm H}, \, {\rm MM}$$
 . . . 40 60 80 100 150 400 $\varepsilon_{\rm r}$ 0,75 0,70 0,66 0,62 0,60 0,58

 β_{τ} — коэффициент, учитывающий состояние поверхности. Значения β_{τ} см. в табл. 6.2; τ_m — среднее напряжение цикла касательных напряжений,

$$\tau_m = \frac{(1 + R_{\tau}) \, \tau_a}{1 - R_{\tau}}.\tag{6.30}$$

Допускаемые коэффициенты запаса: по нормальным напряжениям $[S_{\sigma}] = 1,5 \div 1,8$; по касательным напряжениям $[S_{\tau}] = 1,5 \div 1,8$.

§ 6.3. КОНСТРУКЦИИ ДЕТАЛЕЙ ВОЛНОВЫХ ПЕРЕДАЧ

Гибкие колеса выполняют в виде стакана (см. рис. 6.3, а и б) или цилиндрической оболочки (рис. 6.7), у которой на одном конце нарезаны зубья для зацепления с жестким колесом, а на другом — зубья шлицевого соединения. Соотношения между размерами в зависимости от h и D указаны на рис. 6.7. Конструкция гибкого колеса с двумя зубчатыми венцами приведена на рис. 6.8; колесо симметрично, но зубчатые венцы имеют разные числа зубьев и разные модули. Ширина канавки между венцами служит для выхода зуборезного инструмента.

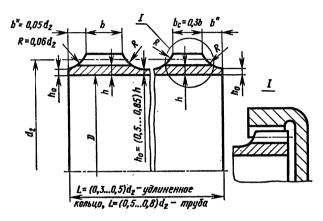


Рис. 6.7. Конструкция гибкого колеса в виде цилиндрической оболочки - трубы,

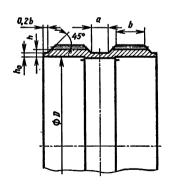


Рис. 6.8. Конструкция гибкого колеса с двумя зубчатыми венцами

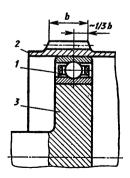


Рис. 6.9. Конструкция кулачкового генератора: 1 — гибкий подшинник; 2 — гибкое колесо; 3 — кулачок

Гибкие колеса изготовляют из улучшенных сталей с твердостью HB~300-350 и пределом выносливости $\sigma_{-1}\approx 350$ МПа.

Генераторы волн деформации. Кулачковые генераторы (рис. 6.9) получили широкое распространение в передачах различных областей машиностроения. Они лучше других генераторов сохраняют под нагрузкой заданный профиль гибкого колеса. Профиль кулачка в полярной системе координат определяется по формуле

$$\rho = 0.5d + mK_w (k_1 \cos 2\varphi - k_2 \cos 6\varphi), \tag{6.31}$$

где d — внутренний диаметр гибкого подшипника; ϕ — полярный угол, отсчитываемый от большой оси деформации; K_w — коэффициент радиальной деформации гибкого колеса,

6.4. Значення корректирующих коэффициентов k_1 н k_2 в зависимости от передаточного отношения $i_{hk}^{(n)}$

Коэффици- енты	i _{hk}							
	50	75	100	200	300	400		
$k_1 \atop k_2$	0,979 0,079	0,961 0,068	0,951 0,065	0,942 0,057	0,936 0,53	0,932 0,52		

 $K_{\rm w}=1\div 1,2;\ k_1$ и k_2 — корректирующие коэффициенты (табл. 6.4).

Основные размеры гибких шариковых подшипников, устанавливаемых между кулачком и гибким колесом, приведены в приложении, табл. П9. Внутренний диаметр гибкого колеса в месте посадки наружного кольца подшипника обрабатывают с отклонениями H7. Посадка внутреннего кольца гибкого подшипника на кулачок выполняется с натягом, близким к нулю. Соответственно профиль кулачка должен выполняться с отклонениями j_s 6 или j_s 7.

Роликовые генераторы (рис. 6.10) просты в изготовлении, но не сохраняют под нагрузкой заданную форму гибкого колеса. Для предохранения зубчатого венца от раскатывания роликами и для увеличения его жесткости под венец запрессовывают подкладное кольцо. Материал кольца — сталь с твердостью HRC 50—58; диаметр роликов следует выбирать наибольшим по условию их размещения. Оси роликов и щеки генератора должны быть достаточно жесткими в радиальном направлении. Максимальный прогиб не должен превышать 0.05 m.



Рис. 6.10. Конструкция роликового генератора: I — ролик; 2 — гибкое колесо, 3 — подкладное кольцо

Дисковые генераторы (рис. 6.11) применяют чаще роликов, так как они сохраняют в нагруженной передаче заданную форму деформации гибкого колеса на большем участке, чем

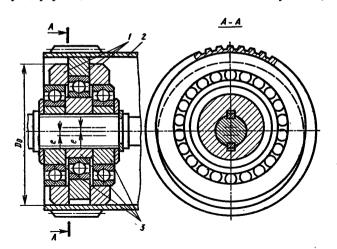


Рис. 6.11. Конструкция дискового генератора без подкладного кольца. I- диск; 2- гибкое колесо; 3- эксцентричные втулки

роликовые, имеют меньший момент инерции, чем кулачковые и роликовые. Диаметр диска

$$D_{x} = d_{x} + 2(w - e), (6.32)$$

где d_{κ} — диаметр подкладного кольца; w — максимальное радиальное упругое перемещение гибкого колеса. Для двухволновых передач при k=1 $w\approx m$; e — эксцентриситет дисков, $e=(3,1\div3,7)$ w, меньшее значение — для тяжелонагруженных передач и передач с малыми передаточными отношениями, большее — для легконагруженных и с большими передаточными отношениями.

Подшипники дисков насаживают непосредственно на эксцентричные шейки вала или на эксцентричные втулки, напрессованные на обычный вал. Для передачи вращающего момента с вала на втулки применяют шпоночные или шлицевые соединения. Радиальная нагрузка на подшипники одного диска (рис. 6.12)

$$F_{rh} \approx 0.85 \frac{T_2}{d_2}$$
 (6.33)

Частота вращения диска относительно своей оси

$$n_{\rm A}^{(h)} = -n_h \left(\frac{2e}{D_{\rm A}} + 1\right),$$
 (6.34)

где n_h — частота вращения генератора; e — эксцентриситет; D_n — наружный диаметр диска.

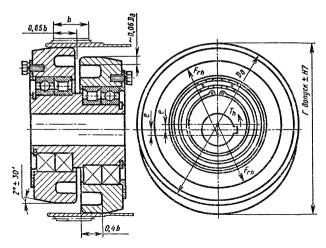


Рис. 6.12. Силы, действующие на подшинники дисков генератора

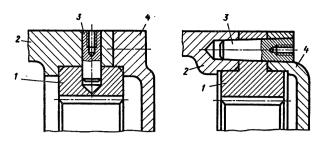


Рис. 6.13. Конструкции жестких неподвижных колес: I — колесо; 2 — корпус; 3 — штифт; 4 — крышка

Жесткие колеса. Толщина жесткого колеса (рис. 6.13) должна быть такой, чтобы его максимальная деформация под нагрузкой не превышала 0.05m. Это условие соблюдается при толщине венца под зубьями $h_1 \ge 0.18d_1$. Для снижения требований к точности выполнения осевых размеров венцы гибкого и жесткого колес делают разной ширины. Более широким — венец колеса с большей твердостью рабочих поверхностей зубьев. Жесткие колеса изготовляют из сталей 40X, 40XH, 30XГСА с термической обработкой до твердости HB 240—290. Конструкции неподвижных жестких колес приведены на рис. 6.13, подвижных — на рис. 6.5 и 6.6.

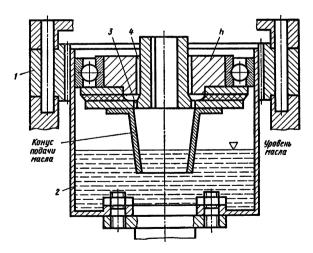


Рис. 6.14. Схема смазывания зацепления и гибкого подшинника вертикального редуктора с номощью маслоподъемного конуса:

1 – жесткое колесо; 2 – гибкое колесо; 3 – отверстия для прохода масла; 4 – зазор для прохода масла и самоустановки генератора; h – генератор

Система смазывания. Для волновых редукторов общего назначения применяют жидкие минеральные масла. Продукты износа рекомендуется улавливать магнитными сливными пробками. В редукторах с кулачковыми генераторами при горизонтальном расположении центральной оси уровень масла должен доходить до центра нижнего шарика гибкого подшипника генератора. При вертикальном расположении оси надо устанавливать маслоподающий конус (рис. 6.14). В тихоходных передачах ($n_h < 960$ об/мин) можно полностью заливать редуктор маслом.

В случае невозможности применения жидких масел (при низких температурах) можно применять пластичные смазочные материалы, закладываемые при сборке редуктора в подшипники и в зацепление или подаваемые к смазочным точкам пресс-масленками.

§ 6.4. ПРИМЕР РАСЧЕТА ВОЛНОВОЙ ПЕРЕДАЧИ

Техническое задание. Определить основные параметры волновой передачи по следующим данным: $n_h = 960$ об/мин; $n_2 = 8$ об/мин; вращающий момент на ведомом валу $T_2 = 60 \ 10^5 \ \text{H} \cdot \text{мм}$; срок службы $L_h = 3000 \ \text{ч}$. Материал гибкого колеса — сталь 30XH3A ($\sigma_B = 900 \ \text{M}\Pi a$; $\sigma_{-1} = 450 \ \text{M}\Pi a$; $\tau_{-1} = 260 \ \text{M}\Pi a$). Нагрузка меняется по отнудевому циклу.

Выбираем конструкцию передачи с кулачковым генератором — двухволновую.

1. Передаточное отношение

$$i_{h2}^{(1)} = \frac{n_h}{n_2} = \frac{960}{8} = 120.$$

Этот результат не выходит за пределы рациональных значений i, указанных в табл. 6.1 для схемы 1. Для двухволновой передачи $n_w = 2$, коэффициент кратности назначаем равным единице (k = 1) [см. пояснения к формуле (6.3)].

2. Предварительное число зубьев гибкого колеса по формуле (6.5)

$$z_2' = k n_w i_{h2}^{(1)} = 1 \cdot 2 \cdot 120 = 240.$$

3. Предварительное значение диаметра делительной окружности гибкого колеса по формуле (6.12)

$$d_2' \ge 1,66 \sqrt[3]{T_2} = 1,66 \sqrt[3]{60 \cdot 10^5} \approx 300 \text{ MM}.$$

4. Предварительное значение модуля

$$m' = \frac{d'_2}{z'_2} = \frac{300}{240} = 1.25 \text{ MM}.$$

5. Предварительное значение внутреннего диаметра гибкого колеса по формуле (6.14)

$$D' = m'(z_2' + 3,4) = 1,25(240 + 3,4) = 304,25$$
 mm

6. Выбираем гибкий подшипник; наружный диаметр его по формуле (6.15)

$$D \geqslant 2,26 \left(\frac{T_2}{10^3}\right)^{0,36} \left[L_h \left(n_h - n_2\right)\right]^{0,12} =$$

$$= 2,26 \left(\frac{60 \cdot 10^5}{10^3}\right)^{0,36} \left[3000 \quad (960 - 8)\right]^{0,12} = 308 \text{ MM}.$$

Условие $D \geqslant D'$ выполняется. Выбираем по табл. П9 приложения подшипник 848, имеющий размеры D=320 мм, d=240 мм, B=48 мм. Максимальная частота вращения $n_{\rm max}=1000$ об/мин.

7. Окончательное значение модуля

$$m = \frac{D}{z_2' + 3.4} = \frac{320}{240 + 3.4} = 1.314$$
 MM,

ближайшее стандартное значение m = 1,25 мм.

8. Окончательное число зубьев гибкого колеса при принятых значениях D и m по формуле (6.16)

$$z_2 = \frac{D}{m} - 3.4 = \frac{320}{1.25} - 3.4 \approx 252.$$

Число зубьев жесткого колеса при $n_w=2$ и k=1 по формуле (6.17)

$$z_1 = z_2 + kn_w = 252 + 1 \cdot 2 = 254.$$

Передаточное отношение при окончательно принятых значениях чисел зубьев по формуле (6.2)

$$i_{h2}^{(1)} = -\frac{z_2}{z_1 - z_2} = -\frac{252}{254 - 252} = -126.$$

Отклонение значения $i_{h2}^{(1)}$ от заданного

$$\Delta i_{h2}^{(1)} = \frac{(i_{h2}^{(1)}, -i_{h2}^{(1)}) 100}{i_{h2}^{(1)}} = \frac{(120 - 126) 100}{120} = -5\%,$$

что допустимо.

9. Проверочный расчет на прочность гибкого колеса.

Коэффициент запаса по нормальным напряжениям по формуле (6.23)

$$S_{\sigma} = \frac{\sigma_{-1}}{\frac{k_{\sigma}\sigma_{a}}{\varepsilon_{\sigma}\beta_{\sigma}} + 0.2\sigma_{m}} = \frac{450}{\frac{0.887 \cdot 198,64}{1.0 \cdot 0.82} + 0.2 \cdot 70,56} = 1,96;$$

$$\sigma_{-1} = 450 \text{ M}\Pi \text{a}; \ k_{\sigma} = \frac{1}{1 + \frac{A_{\sigma}}{\sigma_{-1}}} = \frac{1}{1 + \frac{57,35}{450}} = 0.887;$$

по формуле (6.24)

$$σ_a = 0.35σ_π + 4.93 \frac{Ehm}{ρ^2} = 0.35 \cdot 185 + 4.93 \frac{2 \cdot 10^5 \cdot 2.83 \cdot 1.25}{161.4^2} \approx$$
≈ 198 ΜΠα;

здесь по формуле (6.25)

$$\sigma_{\text{H}} = 632 \mu Y_2 \sqrt{\frac{T_2 \sin 2\alpha}{d_2^3 K_L}} =$$

$$= 632 \cdot 0.6 \cdot 1.41 \sqrt{\frac{60 \cdot 10^5 \cdot 0.64}{315^3 \cdot 1.0}} = 185 \text{ M}\Pi\text{a}, E = 2 \cdot 10^5 \text{ M}\Pi\text{a};$$

по формуле (6.26)

$$h = m [0.51z_2 + 3 - (h_a^* + c^*)] - 0.5D =$$

= 1.25 [0.51 · 252 + 3 - (1 + 0.25)] - 0.5 · 320 = 2.83 mm;
 $\rho = 0.5 (D + h) = 0.5 (320 + 2.83) = 161.4$ mm;
 $\beta_{\sigma} = 0.82$;

по формуле (6.27)

$$\sigma_{m} = 0.35\sigma_{n} + 0.214 \frac{Ehm}{\rho^{2}} = 0.35 \cdot 185 + 0.214 \frac{2 \cdot 10^{5} \cdot 2.83 \cdot 1.25}{161.4^{2}} \approx 70 \text{ M}\Pi\text{a};$$

$$[S_{\sigma}] = 1.5 \div 1.8; S_{\sigma} > [S_{\sigma}].$$

Коэффициент запаса по касательным напряжениям по формуле (6.28)

$$S_{\tau} = \frac{\tau_{-1}}{\frac{k_{\tau}\tau_{a}}{\epsilon_{r}B_{r}} + 0.1\tau_{m}} = \frac{260}{\frac{1,55 \cdot 13,6}{0.59 \cdot 0.82} + 0.1 \cdot 13,6} = 5.8;$$

здесь $\tau_{-1} = 260$ МПа; $k_{\tau} = 1,55$ (см. табл. 6.2); по формуле (6.29)

$$\tau_a = \frac{0.1 (1 - R_v) T_2}{h_0 \rho_0^2} = \frac{0.1 (1 - 0) 60 \cdot 10^5}{1.7 \cdot 160.9^2} = 13.6 \text{ M}\Pi a;$$

$$h_0 = 0.6 \cdot 2.83 = 1.7$$
 mm; $\rho_0 = \frac{D + h_0}{2} = \frac{320 + 1.7}{2} = 160.9$ mm;

$$\epsilon_{\tau} = 0,59$$
 (см. с. 107); $\beta_{\tau} = 0,82$ (см. табл. 6.2);

по формуле (6.30)

$$\tau_{\rm m} = \frac{(1+R_{\rm t})\,\tau_{\rm d}}{1-R_{\rm c}} = \frac{(1+0)\,13.6}{1-0} = 13.6\,$$
 M Π a.

Так как $[S_{\tau}] = 1,5 \div 1,8$, то условие (6.28) $S_{\tau} > [S_{\tau}]$ удовлетворено.

10. Коэффициенты смещения производящего контура по формуле (6.18):

гибкого колеса

$$x_2 = 3 + 0.01z_2 = 3 + 0.01 \cdot 252 = 5.52;$$

жесткого колеса

$$x_1 = x_2 - 1 + K_w (1 + 5 \cdot 10^{-5} K_w z_2) =$$

= 5.52 - 1 + 1.1 (1 + 5 \cdot 10^{-5} \cdot 1.1 \cdot 252) = 5.63.

11. Диаметр окружности вершин зубьев гибкого колеса по формуле (6.19)

$$d_{a2} = d_2 + 2(x_2 + K_F)m = 315 + 2(5,52 + 0,4)1,25 = 329,8$$
 mm;

 K_F — коэффициент головки зуба гибкого колеса, принимаем равным 0,4 при глубине захода $h_3 = 1,4$.

Диаметр окружности впадин гибкого колеса по формуле (6.20)

$$d_{f2} = d_2 + 2(x_2 - h_{a0}^* - c^*) m = 315 + 2(5,52 - 1 - 0,25) 1,25 = 325,67 \text{ MM}.$$

12. Диаметр окружности вершин зубьев жесткого колеса по формуле (6.21)

$$d_{a1} = d_1 + 2(x_1 - h_{a0}^*) m = 317.5 + 2(5.63 - 1)1.25 = 329.075$$
 mm.

Диаметр окружности впадин жесткого колеса не рассчитываем, так как он зависит от параметров долбяка, который будет применен при нарезании зубьев.

13. КПД передачи по формуле табл. 6.1, схема 1,

$$\eta_{h2}^{(1)} = \frac{1 - \psi_{12}^{(h)}}{1 + |i_{h2}^{(h)}| |\psi_{12}^{(h)}|} = \frac{1 - 0,00137}{1 + 126 \cdot 0,00137} = 0,85.$$

Здесь принято $\psi_{12}^{(h)} = 0,00137$ (среднее значение).

14. Подшипники качения подбирают по методике, изложенной в гл. IX; валы и оси рассчитывают по формулам гл. VIII.

глава VII

РЕМЕННЫЕ И ЦЕПНЫЕ ПЕРЕДАЧИ

Задания на курсовое проектирование деталей машин в техникумах содержат разработку одного из видов гибких передач — ременной или цепной передачи. Первую из них располагают в кинематической схеме привода на участке от электродвигателя к редуктору, вторую — для передачи от редуктора к приводному валу. Как правило, та и другая передачи служат для понижения частоты вращения. Специальные передачи, повышающие угловую скорость, здесь не рассматриваются, так как в типовых заданиях на курсовое проектирование они не встречаются.

§ 7.1. ПЛОСКОРЕМЕННЫЕ ПЕРЕДАЧИ

На рис. 7.1 показана схема *открытой* плоскоременной передачи. Более сложные виды передач, рассматриваемые в учебно-справочной литературе, например, полуперекрестные и перекрестные, в проектные задания обычно не включаются, поэтому здесь они не приводятся.

Технические данные плоских ремней приведены в табл. 7.1—7.3.

Наиболее широкое применение получили резинотканевые ремни, однако их не рекомендуется применять в среде, загряз-

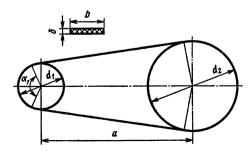


Рис. 7.1. Схема ременной передачи

7.1. Ремни плоские резинотканевые (по ГОСТ 23831-79)

Технические		Прокладки	і из ткани	
Технические характеристики прокладок	Б-800	БКНЛ	TA-150, TK-150	TK-200
Номинальная прочность,				
Н/мм ширины прокладки:				
по основе	55	55	150	200
по утку	16	20	65	65
Наибольшая допускаемая на-				
грузка p_0 на прокладку, $H/мм$				
ширины	3	3	10	13
Расчетная толщина прокладки				
с резиновой прослойкой, мм	1,5	1,2	1,2	1,3
Поверхностная плотность про-				
кладки с резиновой прослой-				
кой, кг/м ²	1,6	1,3	1,3	1,4
Число прокладок при ширине				
ремня В, мм:				
20-71	3-5	3-5	-	-
80-112	3-6	3-6		
125-560	3-6	3-6	3-4	3-4
L		1	1	L

Примечания: 1. Ткани прокладок: Б-800 — хлопчатобумажная; БКНЛ — из нитей полиэфира и хлопка; ТК-150, ТА-150, ТК-200 — синтетическая.

$$Q = (mz + \delta 1150) bl,$$

где m — поверхностная плотность прокладки, кг/м²; z — число прокладок; δ — толщина обкладки, м; b — ширина ремня, м; l — длина ремня, м; число 1150 — плотность резиновой обкладки, кг/м³.

ненной парами нефтепродуктов. Кожаные ремни хорошо выдерживают переменные нагрузки, но не рекомендуются для эксплуатации в средах с высокой влажностью, с парами кислот и щелочей. Стоимость кожаных ремней сравнительно высока, применение их ограничено. Ремни хлопчатобумажные недороги, характеризуются хорошим сцеплением со шкивом, но чувствительны к воздействию кислотных и водяных паров. В курсовых проектах выбирают обычно резинотканевые ремни, если нет специальных указаний в технических условиях.

Необходимые для проектирования ременной передачи данные содержатся в задании, а именно: условия эксплуатации,

^{2.} Ширину ремня выбирают из стандартного ряда: 20; 25; 32; 40; 50; 63; 71; 80; 90; 100; 112; 125; 140; 160; 180; 200; 224; 250; 280; 315; 355; 400; 450; 500; 560 (ряд приведен с сокращением — по ГОСТ значения *b* даны до 1200 мм).

^{3.} Масса ремня, кг

7.2. Ремни кожаные (по ГОСТ 18679-73)

Толщина 8, мм	Ширина <i>b</i> , мм
3	16; 20; 25
3,5	32; 40; 50
4	63; 71
4,5	80; 90; 100; 112
5	125; 140
5, 5	160; 180; 200; 240; 250; 280; 355; 400; 450; 500; 560

7.3. Ремни хлопчатобумажные цельнотканые (по ГОСТ 6982-75)

Толщина 8, мм	Ширина <i>b</i> , мм
4,5	30; 40; 50; 60; 75; 90; 100
6,5	30; 40; 50; 60; 75; 90; 100; 115;
8,5	125; 150; 175 50; 60; 75; 90; 100; (115); 125; 150; (175); 200; (224); 250

Примечание. В скобках указаны нерекомендуемые значения ширины ремня.

кинематическая схема, передаваемая мощность, частоты вращения n_1 вала двигателя и n_2 — ведомого шкива. Передаточное отношение ременной передачи определяют из кинематического расчета привода, как указано в гл. 1.

Вращающий момент на валу ведущего шкива (Н · м) находят по формуле

$$T_1 = \frac{P}{\omega_1} = \frac{30P}{\pi n_1},\tag{7.1}$$

где P — мощность, BT; ω_1 — в рад/с; n_1 — в об/мин.

Диаметр ведущего шкива (мм) вычисляют по эмпирической зависимости

$$d_1 \approx 6\sqrt[3]{T_1},\tag{7.2}$$

где T_1 – в $H \cdot MM$.

По найденному значению подбирают диаметр шкива (мм) из стандартного ряда по ГОСТ 17383 – 73: 40; 45; 50; 56; 63; 71; 80; 90; 100; 112; 125; 140; 160; 180; 200; 224; 250; 280; 315; 355; 400; 450; 500; 560; 630; 710; 800; 900; 1000; 1120; 1250; 1400; 1600; 1800; 2000.

Диаметр ведомого шкива (мм) определяют с учетом относительного скольжения ремня ϵ :

$$d_2 = d_1 i (1 - \varepsilon); \tag{7.3}$$

для передач с регулируемым натяжением ремня $\varepsilon = 0.01$.

По вычисленному значению d_2 подбирают шкив с диаметром из стандартного ряда (см. выше) и уточняют передаточное отношение i на основании формулы (7.3). Так как величина скольжения є пренебрежимо мала, то обычно принимают

$$i = \frac{n_1}{n_2} = \frac{d_2}{d_1}. (7.4)$$

Межосевое расстояние передачи (см. рис. 7.1)

$$a = 2(d_1 + d_2). (7.5)$$

Угол обхвата малого шкива

$$\alpha_1^{\circ} \approx 180 - 60 \frac{d_2 - d_1}{a}.$$
 (7.6)

Длина ремня (без учета припуска на соединение концов)

$$L = 2a + 0.5\pi (d_1 + d_2) + \frac{(d_2 - d_1)^2}{4a}.$$
 (7.7)

Расчетная скорость ремня, м/с

$$v = 0.5d_1\omega_1 = \frac{\pi d_1 n_1}{60},\tag{7.8}$$

где d_1 — в м.

Силы, действующие в ременной передаче, Н:

окружная

$$F_t = \frac{P}{v}; \tag{7.9}$$

натяжение ведущей ветви

где F_0 — предварительное натяжение каждой ветви, определяемое по формуле

$$F_0 = \sigma_0 b \delta, \tag{7.11}$$

в которой σ_0 — напряжение от предварительного натяжения ремня, оптимальное значение его $\sigma_0 = 1,8$ МПа; b и δ — ширина и толщина ремня, мм.

Требуемую ширину резинотканевого ремня находят согласно ГОСТ 23831—79 из условия

$$b \geqslant \frac{F_t}{z[p]}; \tag{7.12}$$

здесь z — число прокладок, выбираемое по табл. 7.1; [p] — допускаемая рабочая нагрузка на 1 мм ширины прокладки,

$$[p] = p_0 C_{\alpha} C_{\nu} C_{\rho} C_{\theta}. \tag{7.13}$$

Значения p_0 (наибольшей допускаемой нагрузки на 1 мм ширины прокладки) приведены в табл. 7.1; коэффициент C_{α} учитывает влияние угла обхвата ремнем меньшего шкива:

$$C_{\alpha} = 1 - 0.003 (180 - \alpha_1^{\circ});$$
 (7.14)

коэффициент

$$C_v = 1,04 - 0,0004v^2, (7.15)$$

он учитывает влияние скорости ремня; коэффициент $C_{\rm p}$, учитывающий влияние режима работы, выбирают по табл. 7.4. Коэффициент $C_{\rm \theta}$ учитывает расположение передачи: если угол θ наклона линии, соединяющей центры шкивов, к горизонту не превышает 60° , то принимают $C_{\rm \theta}=1$; при $\theta>60^{\circ}$ $C_{\rm \theta}=0.9$; при $\theta>80^{\circ}$ $C_{\rm \theta}=0.8$.

7.4. Значения коэффициента $C_{\rm p}$ для ременных передач от асинхронных двигателей с короткозамкнутым ротором

Характер нагрузки	Типы машин	C _p
С незначительными колебаниями, пусковая нагрузка до 120% номинальной	Ленточные конвейеры; станки токарные, сверлиль- ные, шлифовальные	1,0
С умеренными колебаниями, пусковая нагрузка до 150% номинальной	Пластинчатые конвейеры; станки фрезерные, револьверные, плоскошлифовальные; насосы и компрессоры поршневые	0,9
Со значительными колебаниями, пусковая нагрузка до 200% номинальной	Конвейеры винтовые и скребковые, ковшовые элеваторы; станки строгальные и долбежные; прессы винтовые и эксцентриковые	0,8
С резкими колебаниями, пусковая нагрузка до 300% номинальной	Лесопильные рамы; шаровые мельницы, дробилки, молоты; подъемники	0,7
Примечание. При работе	в две смены значения $C_{\mathfrak{p}}$ снижа	ют на

Примечание. При работе в две смены значения C_{p} снижают на 0,1, при трехсменной работе — на 0,2.

Для передач с автоматическим регулированием натяжения ремня $C_0 = 1$ при любом значении θ .

Найденное по формуле (7.12) значение b округляют до ближайшего большего по табл. 7.1. Для обеспечения достаточной эластичности ремня необходимо соблюдать условие

$$\delta = \delta_0 z \leqslant 0.025 d_1,\tag{7.16}$$

где δ_0 — толщина одной прокладки с резиновой прослойкой (см. табл. 7.1); если оно не выполнено, то следует уменьшить число прокладок z и повторить расчет по формуле (7.12).

При расчете сечений кожаных и хлопчатобумажных ремней определяют площадь поперечного сечения ремня по формуле

$$b\delta \geqslant \frac{F_t}{\lceil k \rceil},\tag{7.17}$$

где $\lceil k \rceil = k_0 C_a C_v C_p C_\theta$.

Здесь [k] — допускаемая удельная окружная сила на единицу площади поперечного сечения ремня, МПа (численно МПа = H/MM^2); при $\alpha_1 = 180^\circ$, скорости ремня v = 10 м/с, $\theta = 0^\circ$ и $\sigma_0 = 1,8$ МПа принимают для кожаных ремней $k_0 = 2,2$ МПа, для хлопчатобумажных $k_0 = 1,7$. Значения коэффициентов C_{α} , C_{ν} , C_{ν} и C_{θ} такие же, как и для передач резинотканевыми ремнями. Толщина ремней $\delta \leq 0.03 d_1$. Ширину ремня выбирают по табл. 7.2 или 7.3 так, чтобы было соблюдено условие (7.17).

Максимальное напряжение в сечении ремня

$$\sigma_{\max} = \sigma_1 + \sigma_{\aleph} + \sigma_{\nu}, \tag{7.18}$$

где напряжение от растяжения

$$\sigma_1 = \frac{F_1}{b\delta};\tag{7.19}$$

напряжение от изгиба ремня

$$\sigma_{\rm H} = E_{\rm H} \frac{\delta}{d_1}; \tag{7.20}$$

для кожаных и резинотканевых ремней $E_{\rm H}=100\div 200~{\rm M}\Pi{\rm a},$ для хлопчатобумажных $E_{\rm u}=50\div 80~{\rm M}\Pi{\rm a}.$

Напряжение от центробежной силы

$$\sigma_v = \rho v^2 \cdot 10^{-6},\tag{7.21}$$

плотность ремня $\rho = 1100 \div 1200$ кг/м³; множитель 10^{-6} служит для перевода σ_n в МПа.

Максимальное напряжение, вычисленное по формуле (7.18), не должно превышать предела выносливости $\sigma_{-1} \leqslant 7$ МПа для

резинотканевых и кожаных ремней; $\sigma_{-1} \le 5 \text{ M}\Pi a - для хлопчатобумажных ремней.}$

Расчетную долговечность ремня определяют в зависимости от базового числа циклов (обычно его принимают равным 10^7) и от числа пробегов за все время эксплуатации $N_{\rm q}=2\cdot 3600\,H_0\lambda$, где $\lambda=v/L-$ число пробегов ремня в секунду; долговечность, ч

$$H_0 = \frac{\sigma_{-1}^6 \cdot 10^7 C_i C_{\rm H}}{\sigma_{\rm max}^6 2 \cdot 3600 \lambda}; \tag{7.22}$$

 $C_i \approx 1.5 \sqrt[3]{i} - 0.5$ — коэффициент, учитывающий влияние передаточного отношения i; $C_{\rm H} = 2$ при периодически изменяющейся нагрузке от нуля до номинального значения; $C_{\rm H} = 1$ при постоянной нагрузке. Рекомендуемая долговечность H_0 не меньше 2000 ч.

Нагрузку на валы ременной передачи определяют в зависимости от способа регулирования натяжения ремня:

при автоматическом регулировании

$$F_{\rm B} = 2F_0 \sin \frac{\alpha_1}{2}; \tag{7.23}$$

при периодическом регулировании

$$F_{\rm s} = 3F_0 \sin \frac{\alpha_1}{2}.$$
 (7.23 a)

Последовательность расчета плоскоременной передачи поясняется конкретным численным примером (табл. 7.5).

Исходные данные приняты из примера кинематического расчета привода, выполненного в гл. 1: в кинематической схеме привода (см. рис. 1.1) ременная передача расположена между электродвигателем и редуктором; передаваемая мощность P=3,6 кВт; ближайший по каталогу электродвигатель (см. приложение, табл. П1) 4A112MB6У3; мощность 4 кВт; синхронная частота вращения $n_c=1000$ об/мин; скольжение s=5,1%; $T_n/T_{\text{ном}}=2,0$. Передаточное отношение ременной передачи $i=\frac{n_1}{n_2}=2,5$.

Шкивы плоскоременных передач. Один из шкивов передачи выполняют с гладким ободом, второй (больший) — выпуклым (рис. 7.2). Материал шкивов: при окружной скорости до 30 м/c — чугун СЧ 15; при большей скорости (порядка 30-50 м/c) — сталь 25Л (не ниже); для быстроходных передач ($\upsilon \ge 50 \text{ м/c}$) — алюминиевые сплавы.

7.5. Расчет плоскоременной передачи

№ по пор.	Определяемый параметр	Численное значение
1	Частота вращения ведущего шкива, об/мин $n_1 = n_c(1-s);$ (1.3)	$n_1 = 1000(1 - 0.051) = 949$ об/мин
2	Вращающий момент на веду- щем валу, Н·м	$T_1 = \frac{30 \cdot 3.6 \cdot 10^3}{3.14 \cdot 949} = 36.4 \text{ H} \cdot \text{M}$
	$T_1 = \frac{P}{\omega} = \frac{30P}{\pi n_1};$ (7.1)	
3	Диаметр ведущего шкива, мм $d_1 \approx 6 \sqrt[3]{T_1}$, (7.2)	$d_1 = 6\sqrt[3]{36,4 \cdot 10^3} = 198$ мм; принимаем $d_1 = 200$ мм (см. с. 120)
4	Диаметр ведомого шкива, мм $d_2 = d_1 i (1 - \varepsilon);$ (7.3)	$d_2 = 200 \cdot 2,5(1-0,01) = 495$ мм; принимаем $d_2 = 500$ мм (см. с. 120)
5	Передаточное отношение $i = \frac{d_2}{d \cdot (1 - \varepsilon)}; \qquad (7.3)$	$i = \frac{500}{200(1-0,01)} = 2,525.$ Отклонение $\frac{\Delta i}{i} =$
		$=\frac{(2,525-2,5)100}{2,5}=1\%$ (допускается до 3%)
6	Межосевое расстояние, мм $a = 2(d_1 + d_2);$ (7.5)	a = 2(200 + 500) = 1400 MM
7	Угол обхвата малого шкива $\alpha_1^\circ = 180 - 60 \frac{d_2 - d_1}{a}; \qquad (7.6)$	$\alpha_1^{\circ} = 180 - 60 \frac{500 - 200}{1400} = 167^{\circ}$
8	Длина ремня, мм $L = 2a + 0.5\pi(d_1 + d_2) + \frac{(d_2 - d_1)}{4a}$; (7.7)	$L = 2 \cdot 1400 + 0.5 \cdot 3.14(200 + 500) + \frac{(d_2 - d_1)^2}{4 \cdot 1400} \approx 3920 \text{ mm}$

№ по пор	Определяемый параметр	Численное значение
9	Скорость ремня, м/с $v = \frac{\pi d_1 n_1}{60}$, (7.8)	$v = \frac{3,14 \cdot 0,2 \cdot 949}{60} = 10 \text{ m/c}$
10	Окружная сила, Н $F_t = \frac{P}{v}$; (7.9)	$F_t = \frac{3.6 \cdot 10^3}{10} = 360 \text{ H}$
11	Из табл. 7.1 выбираем ремень Б800 с числом прокладок $z=3$, $\delta_0=1,5$ мм, $p_0=3$ Н/мм. Проверяем выполнение условия $\delta \le 0.025d_1$	$\delta \Rightarrow \delta_0 z = 1,5 \cdot 3 = 4,5$ мм; $0,025 \cdot d_1 = 0,025 \cdot 200 = 5$ мм. Условие выполнено
12.	Коэффициент угла обхвата $C_{\alpha} = 1 - 0,003(1 - \alpha^{\circ}_{1});$ (7.14)	$C_{\alpha} = 1 - 0,003(180 - 167) = 0,96$
13	Коэффициент, учитывающий влияние скорости ремня, $C_v = 1,04-0,0004v^2$; (7.15)	$C_c = 1,04 - 0,0004 \cdot 10^2 = 1,0$
14	Коэффициент режима работы C_p — по табл. 7.5	Для передачи к ленточному конвейеру при постоянной нагрузке $C_{\rm p}=1.0$
15	Коэффициент, учитывающий угол наклона линии центров передачи, C_{θ}	При наклоне до 60° принима- ем $C_{\theta} = 1$
16	Допускаемая рабочая нагрузка на 1 мм ширины прокладки, $H/мм$ [p] = $p_0C_\alpha C_v C_p C_\theta$; (7.13)	[p] = 3·0,96 = 2,88 H/MM
17	Ширина ремня, мм $b \ge \frac{F_t}{z[p]};$ (7.12)	$b \ge \frac{360}{3 \cdot 2,88} = 42$ мм; по табл. 7.1 принимаем $b = 50$ мм
18	Предварительное натяжение ремня, Н $F_0 = \sigma_0 b \delta$; (7.11)	1 (= 1,0 30 4,5 = 103 11

№ по пор.	Определяемый параме тр	Численное значение
19	Натяжение ветвей, H : ведущей $F_1 = F_0 + 0.5 F_t$, ведомой $F_2 = F_0 - 0.5 F_t$ (7.10)	$F_1 = 405 + 0.5 \cdot 360 = 585 \text{ H};$ $F_2 = 405 - 0.5 \cdot 360 = 225 \text{ H}$
20	Напряжение от силы F_1 , МПа $\sigma_1 = \frac{F_1}{b\delta}$; (7.19)	$\sigma_1 = \frac{585}{50 \cdot 4,5} = 2,6 \text{ M}\Pi a$
21	Напряжение изгиба, МПа $\sigma_{_{\rm H}} = E_{_{\rm H}} \frac{\delta}{d_{_{\rm I}}} \; ; \qquad \qquad (7.20)$	$\sigma_{H} = 100 - \frac{4,5}{200} = 2,25 \text{ M}\Pi a$
22	Напряжение от центробежной силы, МПа $\sigma_v = \rho v^2 10^{-6}$; (7.21)	$\sigma_v = 1100 \cdot 10^2 \cdot 10^{-6} = 0.11 \text{ M}\Pi a$
23	Максимальное напряжение, МПа $\sigma_{max} = \sigma_1 + \sigma_n + \sigma_r;$ (7.18)	$\sigma_{\max} = 2.6 + 2.25 + 0.11 = = 4.96 \ \text{М}\Pi \text{а}.$ Условие $\sigma_{\max} \le 7 \ \text{М}\Pi \text{а}$ выполнено
24	$C_i = 1.5 \sqrt[3]{i} - 0.5;$ $C_H = 1$ при постоянной нагрузке. Долговечность, ч	$\lambda = \frac{10}{3.92} = 2.6 \text{ c}^{-1};$ $C_i = 1.5 \sqrt[3]{2.5} - 0.5 = 1.6;$ $C_H = 1;$ $H_0 = \frac{7^6 \cdot 10^7 \cdot 1.6}{4.96^6 \cdot 2 \cdot 3600 \cdot 2.6} = \frac{6650 \text{ y}}{10^8 \cdot 10^8 \cdot 10^8}$
25	Нагрузка на валы передачи, H $F_{\rm B}=3F_0\sin\frac{\alpha_1}{2}$; (7.23)	$F_{\rm B} = 3.405 \cdot \sin \frac{167^{\circ}}{2} = 1213 \text{ H}$

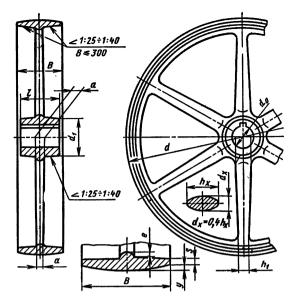


Рис. 7.2. Шкив плоскоременной передачи

Диаметры шкивов определяют расчетом по формуле (7.2) и округляют до стандартного значения (см. с. 120).

Ширину B обода назначают в зависимости от ширины b ремня, как указано в табл. 7.6. Шероховатость рабочей поверхности обода $Ra \le 2,5$ мкм. В зависимости от ширины обода определяют стрелу выпуклости по табл. 7.6. Толщина обода у края s = 0,005d + 3 мм; толщина выступа на внутренней стороне обода для плавного сопряжения его со спицами (высота рифта) e = s + 0,02B.

Шкивы диаметром до 300 мм выполняют обычно без спиц — с диском толщиной $s_1 \approx (0.8 \div 1) \, s$. Шкивы диаметром до 500 мм выполняют с числом спиц z=4; при d>500 мм z=6. Спицы эллиптического сечения рассчитывают на изгиб; принимают условно, что сила F_t воспринимается z/3 спицами. Расчетное сечение спиц располагают условно в диаметральной плоскости, проходящей через центр шкива перпендикулярно оси спицы; соотношение осей эллипса a:h=0.4.

Момент сопротивления одной спицы в условном сечении

$$W = \frac{\pi a h^2}{32} = \frac{\pi}{32} \, 0.4 h^3.$$

7.6. Ширина B обода шкива в зависимости от ширины ремня (по ГОСТ 17383 - 73). Размеры, мм

ь	В	ь	В	ь	В	ь	В
40 50 63 71 80 90	50 63 71 80 90 100	100 112 125 140 160 180	112 125 140 160 180 200	200 224 250 280 315 355	224 250 280 315 355 400	400 450 500 560	450 500 560 630

	Диаметр шкива d						
Ширина обода В	250 - 280	315-355	400 - 450	500 - 560	630 - 1000		
	Стрела выпуклости у						
До 125			1,0	1,0	1,0		
Св. 125 до 160	0,8	1,0	1,2	1,5	1,5		
Св. 160				-,0	2,0		

Условие прочности

$$\sigma_{\scriptscriptstyle \rm II} = \frac{3M_{\scriptscriptstyle \rm II}}{zW} = \frac{3F_{\scriptscriptstyle \rm I}d}{2zW} \leqslant [\sigma_{\scriptscriptstyle \rm II}],$$

откуда

$$h \geqslant \sqrt[3]{\frac{38F_i d}{z \left[\sigma_{\rm u}\right]}}. (7.24)$$

Размеры осей эллипса в сечении спицы близ обода

$$a_1 = 0.8a$$
; $h_1 = 0.8h$.

Длина ступицы шкива $l=(1,5\div 2)\,d_0$ (но рекомендуется не больше ширины обода); наружный диаметр ступицы $d_1==(1,8\div 2)\,d_0$, где d_0 – диаметр отверстия. В примере расчета плоскоременной передачи диаметр ведомого шкива d=500 мм, ширина ремня b=50 мм; по табл. 7.6 находим B=63 мм; толщина обода у края $s=0,005\cdot 500+3=5,5$ мм, принимаем s=6 мм; рифт e=s+0,02 $B=6+0,02\cdot 63\approx 7,5$ мм; стрела выпуклости (по табл. 7.6) y=1,0 мм. Оси эллипса в условном сечении спицы — по формуле (7.24) при z=4:

$$h = \sqrt[3]{\frac{38F_t d}{z \left[\sigma_u\right]}} = \sqrt[3]{\frac{38 \cdot 360 \cdot 500}{4 \cdot 30}} = 38.5 \text{ MM}.$$

Здесь для чугуна принято $[\sigma_{\rm H}]=30~{\rm M}\Pi a=30~{\rm H/mm^2}.$ Принимаем $h=40~{\rm mm}$; $a=0,4h=0,4\cdot 40=16~{\rm mm}$; $h_1=0,8\cdot 40=32~{\rm mm}$; $a_1=0,8\cdot 16\approx 13~{\rm mm}.$

§ 7.2. КЛИНОРЕМЕННЫЕ ПЕРЕДАЧИ

Основные параметры резинотканевых клиновых ремней регламентированы ГОСТ 1284.1 $-80 - \Gamma$ ОСТ 1284.3 -80 (табл. 7.7).

Кинематическая схема передачи такая же, как и плоскоременной (см. рис. 7.1). К необходимым для проектирования клиноременной передачи данным относят: расчетную передаваемую мощность P, условия эксплуатации, частоту вращения ведущего шкива, передаточное отношение $i = n_2/n_1$.

Диаметр меньшего шкива определяют по эмпирической формуле

$$d_1 \approx (3 \div 4) \sqrt[3]{T_1},$$
 (7.25)

где T_1 — вращающий момент, $\mathbf{H} \cdot \mathbf{m} \mathbf{m}$, по формуле (7.1); d_1 — в мм. Полученный результат округляют до стандартного значения (см. с. 120), но не меньше минимального d_1 , указанного в

ния (см. с. 120), но не меньше минимального d_1 , указанного в табл. 7.8.

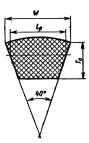
Диаметр d_2 , вычисленный по формуле (7.3), округляют (см. с. 120) и уточняют передаточное отношение i. Межосевое расстояние назначают в интервале

$$a_{\min} = 0.55 (d_1 + d_2) + T_0; a_{\max} = d_1 + d_2,$$
 (7.26)

где T_0 — высота сечения ремня, указанная в табл. 7.7.

Длину ремня определяют по формуле (7.7), округляют до стандартного значения, приведенного в примечании к табл. 7.7, и уточняют межосевое расстояние

$$a = 0.25 [(L_p - w) + \sqrt{(L_p - w)^2 - 2y}],$$
 (7.27)


где L_p — расчетная длина ремня; $w = 0.5\pi (d_1 + d_2)$; $y = (d_2 - d_1)^2$. Угол обхвата меньшего шкива

$$\alpha_1^{\circ} = 180 - 57 \frac{d_2 - d_1}{a}. \tag{7.28}$$

Для выбора ремня по его сечению служит номограмма (рис. 7.3).

Способы регулирования натяжения ремня представлены на

7.7. Клиновые ремни (во ГОСТ 1284.1-80) Размеры, мм

Обо- значе- ние сечения ремня	d ₁ , не менее	l _p	W	T ₀	A	L_{p}	ΔL	Масса одного метра, кг
О А Б В Т Д Е	63 90 125 200 315 500	8,5 11,0 14,0 19,0 27 32	10 13 17 22 32 38	6 8 10,5 13,5 19,0 23,5	47 81 133 230 476 692	400 - 2 500 560 - 4 000 800 - 6 300 1800 - 10 000 3150 - 14 000 4500 - 18 000	25 33 40 59 76 95	0,06 0,10 0,18 0,30 0,60 0,90
E	800	42	50	30,0	1172	6300 18 000	120	1,52

Примечания: 1. В графе A указана площадь поперечного сечения ремня, мм²; в графе ΔL — разность между расчетной $L_{\rm p}$ и внутренней $L_{\rm BH}$ длиной ремня.

- 2. Стандартный ряд длин $L_{\rm p}$: 400; 450; 500; 560; 630; 710; 800; 900; 1000; 1120; 1400; 1600; 1800; 2000; 2240; 2500; 2800; 3150; 3550; 4000; 4500; 5000; 5600; 6300; 7100; 8000; 9000; 10000; 11200; 12500; 14000; 16000; 18000.
- 3. В технически обоснованных случаях допускаются промежуточные значения L_p : 425; 475; 530; 600; 670; 750; 850; 950; 1060; 1180; 1320; 1500; 1700; 1900; 2120; 2360; 2650; 3000; 3350; 3750; 4250; 4750; 5300; 6000; 6700; 7500; 8500; 9500; 10600; 11800; 13200; 15000; 17000.

Условные обозначения ремней:

ремень сечения **B** с расчетной длиной $L_{\mathbf{p}}=2500$ мм, с кордной тканью в несущем слое:

Ремень В-2500 Т ГОСТ 1284.1-80:

то же, с кордшнуром:

Ремень В-2500 Ш ГОСТ 1284.1-80

7.8. Номинальная мощность P_0 , кВт, передаваемая одним клиновым ремнем (по ГОСТ 1284.3—80, с сокращениями)

Сечение ремня (длина	$d_1, \qquad i$		Частота вращения n ₁ , об/мин							
$L_{\rm p}$, MM)	ММ	,	400	800	950	1200	1450	1600	2000	
	71	1,2 1,5 ≥ 3	0,22 0,23 0,23	0,39 0,40 0,42	0,45 0,46 0,48	0,54 0,56 0,58	0,63 0,66 0,68	0,69 0,71 0,73	0,82 0,84 0,87	
O (1320)	80	1,2 1,5 ≥ 3	0,26 0,27 0,28	0,47 0,49 0,50	0,55 0,56 0,58	0,66 0,68 0,71	0,77 0,80 0,82	0,84 0,86 0,89	1,0 1,03 1,06	
	100	1,2 1,5 ≥ 3	0,36 0,37 0,38	0,65 0,67 0,70	0,75 0,78 0,80	0,92 0,95 0,98	1,07 1,11 1,14	1,16 1,20 1,24	1,39 1,43 1,48	
	112	1,2 1,5 ≥ 3	0,42 0,43 0,44	0,76 0,78 0,81	0,88 0,91 0,94	1,07 1,10 1,14	1,25 1,29 1,33	1,35 1,40 1,44	1,61 1,66 1,72	
	100	1,2 1,5 ≥ 3	0,50 0,52 0,53	0,88 0,91 0,9 4	1,01 1,05 1,08	1,22 1,25 1,30	1,41 1,45 1,50	1,52 1,57 1,62	1,65 1,71 1,76	
A (1700)	125	1,2 1,5 ≥ 3	0,71 0,74 0,76	1,28 1,32 1,36	1,47 1,52 1,57	1,77 1,83 1,89	2,06 2,13 2,19	2,22 2,29 2,36	2,42 2,50 2,58	
(1700)	160	1,2 1,5 ≥ 3	1,00 1,03 1,07	1,81 1,87 1,93	2,09 2,15 2,22	2,52 2,60 2,69	2,92 3,02 3,11	3,14 3,24 3,35	3,61 3,53 3,64	
	180	1,2 1,5 ≥ 3	1,16 1,20 1,24	2,10 2,17 2,24	2,43 2,51 2,59	2,93 3,03 3,12	3,38 3,50 3,61	3,63 3,75 3,87	3,94 4,07 4,19	
	140	1,2 1,5 ≥ 3	1,12 1,16 1,20	1,95 2,01 2,08	2,22 2,30 2,37	2,64 2,72 2,82	3,01 3,10 3,21	3,21 3,32 3,42	3,66 3,78 3,90	
Б	180	1,2 1,5 ≥ 3	1,70 1,76 1,81	3,01 3,11 3,21	3,45 3,56 3,67	4,11 4,25 4,38	4,70 4,85 5,01	5,01 5,17 5,34	5,67 5,86 6,05	
(2240)	224	1,2 1,5	2,32 2,40	4,13 4,27	4,73 4,89	5,63 5,81	6,39 6,60	6,77 7,00	7,55 7,80	

Сечение ремня	d ₁ ,			Ч	аст	ота вр	а щен ия	n ₁ ,	об/	мин (
(длина <i>L</i> _p , мм)	мм	i	400	800	0	950	1200	14	50	1600	2000
	224	≥ 3	2,47	4,4	0	5,04	6,00	6,8	31	7,22	8,05
Б (2240)	280	1,2 1,5 ≥ 3	3,09 3,19 3,29	5,4 5,6 5,8	7_	6,26 6,47 6,67	7,42 7,66 7,91	8,3 8,3 8,3	57	8,69 8,97 9,26	9,20 9,50 9,80
Сечение ремня	ر	i		ч	Іаст	ота вр	а цен ия	n_1 ,	об,	/мин	
(длина <i>L</i> _p , мм)	d ₁	-	400)		800	950)	1	200	1450
	224	1,2 1,5 ≥ 3	3,20 3,3 3,4	31		5,47 5,65 5,83	6,1 6,3 6,5	8		7,18 7,45 7,69	7,97 8,23 8,49
В	280	1,2 1,5 ≥ 3	4,6 4,7 4,9	78		8,04 8,30 8,57	9,0 9,3 9,6	7	1	0,49 0,83 1,17	11,47 11,84 12,22
(3750)	355	1,2 1,5 ≥ 3	6,4 6,6 6,9	59	1	1,19 1,56 1,92	12,5 12,9 13,3	5	1	4,23 4,70 5,16	15,10 15,59 16,09
	450	1,2 1,5 ≥ 3	8,7 9,0 9,3)5	1	4,76 5,24 5,72	16,2 16,8 17,3	32	1	7,75 8,33 8,91	_
	400	1,2 1,5 ≥ 3	12,2 12,6 13,0	54	2	9,75 20,40 21,04	21,4 22,1 22,8	6	2	2,68 3,42 4,16	_
Г	560	1,2 1,5 ≥ 3	20,3 20,9 21,5	93	3	31,62 32,65 33,68	33,2 34,3 35,3	30		-	_
(6000)	710	1,2 1,5 ≥ 3	27,2 28,1 29,0	12	4	39,44 10,73 12,02	38,9 40,1 41,4	17		_	
Д (7100)	560	1,2 1,5 ≥ 3	24,6 24,8 25,6	35	3	31,62 32,65 33,68	33,2 34,3 35,3	30		_	_

Сечение ремня			ı	Частота вр	ащения <i>п</i> ₁ ,	об/мин	
(длина L _p , мм)	<i>d</i> ₁ , мм	1	400	800	950	1200	1450
Д (7100)	710	1,2 1,5 ≥ 3	34,05 35,17 36,28	39,44 40,73 42,02	38,90 40,17 41,44		-

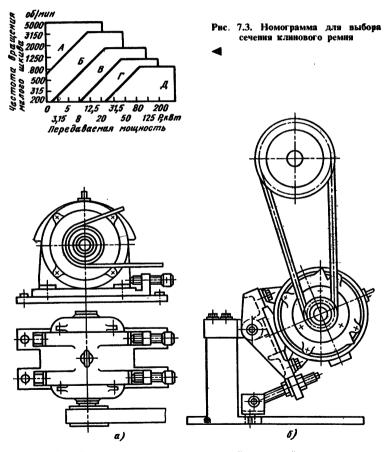


Рис , 7.4 . Способы регулирования натяжения ремней установкой электродвигателя: a- на салазках; $\delta-$ на шарнирной плите

рис. 7.4. Необходимое для передачи заданной мощности P число ремней P

$$z = \frac{PC_{p}}{[p]} = \frac{PC_{p}}{P_{0}C_{L}C_{\alpha}C_{z}}; \qquad (7.29)$$

здесь P_0 — мощность, кВт, допускаемая для передачи одним ремнем (табл. 7.8); C_L — коэффициент, учитывающий влияние длины ремня (табл. 7.9); C_p — коэффициент режима работы (табл 7.10); C_{α} — коэффициент угла обхвата:

при
$$\alpha^{\circ}=180$$
 160 140 120 100 90 70 $C_{\alpha}=1,0$ 0,95 0,89 0,82 0,83 0,68 0,56

 C_z – коэффициент, учитывающий число ремней в передаче:

при
$$z = 2-3$$
 4-6 св. 6 $C_z = 0.95$ 0.90 0.85

Для удобства монтажа и эксплуатации передачи рекомендуется ограничивать $z \le 8$; если же по расчету получается z > 8, то следует увеличить d_1 и соответственно d_2 или перейти к большему сечению ремня.

7.9. Значения коэффициента C_L для клиновых ремней (по ГОСТ 1284.3-80, с сокращениями)

,	Сечение ремня								
L _p . MM	0	Α	Б	В	Γ	Д			
400	0,79								
500	0,81			1					
560	0,82	0,79							
710	0,86	0,83							
900	0,92	0,87	0,82						
1000	0,95	0,90	0,85						
1250	0,98	0,93	0,88	1					
1500	1,03	0,98	0,92						
1800	1,06	1,01	0,95	0,86					
2000	1,08	1,03	0,98	0,88					
2240	1,10	1,06	1,00	0,91					
2500	1,30	1,09	1,03	0,93					
2800	_	1,11	1,05	0,95					
3150	_	1,13	1,07	0,97	0,86				
4000	-	1,17	1,13	1,02	0,91				
4750	_	_	1,17	1,06	0,95	0,91			
5300	_	_	1,19	1,08	0,97	0,94			
6300	-	_	1,23	1,12	1,01	0,97			
7500	_	_	_	1,16	1,05	1,01			
9000	_	_	_	1,21	1,09	1,05			
10000 -	_	-	_	1,23	1,11	1,07			

7.10. Значения $C_{\rm p}$ для клиноременных передач от двигателей перемениого тока общепромышленного применения

Режим работы; кратковременная нагрузка, % от	Типы машин	С _р при числе смен			
номинальной					
Легкий; 120	Конвейеры ленточные; насосы и компрессоры центробежные; токарные и шлифовальные станки	1,0	1,1	1,4	
Средний; 150	Конвейеры цепные; элеваторы; ком- прессоры и насосы поршневые; стан- ки фрезерные; пилы дисковые	1,1	1,2	1,5	
Тяжелый; 200	Конвейеры скребковые, шнеки; станки строгальные и долбежные; прессы; машины для брикетирования кормов; деревообрабатывающие	1,2	1,3	1,6	
Очень тяже- лый; 300	Подъемники, экскаваторы, молоты, дробилки, лесопильные рамы	1,3	1,5	1,7	

Предварительное натяжение ветвей клинового ремня, Н

$$F_0 = \frac{850PC_pC_L}{zvC_n} + \theta v^2, \tag{7.30}$$

где $v - \mathbf{B} \ \mathbf{M/c}$; $\theta - \mathbf{k}$ оэффициент, учитывающий центробежную силу. $(\mathbf{H} \cdot \mathbf{c}^2)/\mathbf{M}^2$:

при сечении О А Б В Г Д
$$\theta=0.06$$
 0,1 0,18 0,3 0,6 0,9

Значения остальных членов формулы те же, что и в формуле (7.29). Сила, действующая на валы, Н

$$F_{\rm B} = 2F_0 z \sin \frac{\alpha_1}{2}. (7.31)$$

Рабочий ресурс ремней, ч

$$H_0 = N_{0u} \frac{L_p}{60\pi d_1 n_1} \left(\frac{\sigma_{-1}}{\sigma_{\text{max}}}\right)^8 C_i C_{\text{H}}; \tag{7.32}$$

он должен быть не меньше 5000 ч при легком режиме работы, 2000 ч — при среднем и 1000 ч — при тяжелом режиме работы. В формуле (7.32) $N_{0\pi}$ — базовое число циклов.

для ремней сечением O и A
$$_{N_{0\pi}}$$
 В и $_{N_{0\pi}}$ $_{N_{0\pi}}$

7.11. Алгоритм расчета клиноременной передачи

В исходных данных содержатся: передаваемая мощность P, кВт, условия эксплуатации, тип двигателя— асинхронный, $P_{\text{ном}}$, кВт, синхронная частота вращения $n_{\rm e}$, об/мин, скольжения s, передаточное отношение i

Определяемый параметр	Расчетная формула	Примечание
1. Частота вращения меньшего шкива, об/мин	$n_1 = n_c (1 - s);$ (1.3)	
2. Выбор сечения ремня 3. Вращающий	Номограмма, рис. 7.3 $T_1 = \frac{30P}{\pi n_1}; \qquad (7.1)$	
момент Н·м 4. Диаметр мень- шего шкива, мм	$d_1 \approx (3 \div 4) \sqrt[3]{T_1};$ (7.25)	Округлить по
5. Диаметр боль-	$d_2 = d_1 i (1 - \varepsilon); \tag{7.3}$	табл. 7.7 и ГОСТ 17383—73 (см. с. 120)
шего шкива, м		ГОСТ 17383 — 73
6. Передаточное отношение (уточненное)	$i = \frac{d_2}{d_1(1-\varepsilon)};$	
7. Межосевое расстояние, мм, в интервале	$\begin{cases} a_{\min} = 0.55(d_1 + d_2) + T_0 \\ a_{\max} = d_1 + d_2 \end{cases}; (7.26)$	T ₀ см. табл. 7.7
8. Длина ремня, мм	$L = 2a + 0.5\pi (d_1 + d_2) + \frac{(d_2 - d_1)^2}{4a}; $ (7.7)	Округлить по табл. 7.7
9. Уточненное межосевое расстояние, мм	$\begin{vmatrix} a = 0.25 \left[(L_{p} - w) + V(L_{p} - w)^{2} - 2y \right]; \qquad (7.27)$	
10. Угол обхвата,°	$\alpha_1^{\circ} = 180 - 57 \frac{d_2 - d_1}{a} ; (7.28)$	
11. 12. 13. 14. Компоненты формулы (7.29)	P_0 по табл. 7.8 C_L по табл. 7.9 C_p по табл. 7.10 C_α и C_z в пояснении к формуле (7.29)	

Определяемый параметр	Расчетная формула	Примечание	
15. Число ремней	$z = \frac{PC_{p}}{P_{0}C_{L}C_{\alpha}C_{z}};$	(7.29)	Округлить до целого числа
16. Натяжение ветви ремня, Н	$F_0 = \frac{850PC_pC_L}{zvC_\alpha} + \theta v^2;$	(7.30)	
17. Сила, действую- щая на вал, Н	$F_{\rm B}=2F_0z\sin\frac{\alpha_1}{2};$	(7.31)	
18. Рабочий ресурс передачи, ч	$H_0 = \frac{N_{0\text{H}}L\left(\frac{\sigma_{-1}}{\sigma_{\text{max}}}\right)}{60\pi d_1 n_1} C_i C_{\text{H}};$	(7.32)	Проверить условие <i>H</i> ₀ ≥ . > [H] (требуемого)

7.12. Канавки шкивов клиноременных передач (по ГОСТ 20889-80). Размеры, мм

Ремен	Ремень		меры	кана	вок	Углы профиля канавок				
Сечение	t	h	h.		_	34°	36°	38°	40°	
Сечение	do	n	h ₀	f e		$d_{ m p}$				
0	8,5	7,0	2,5	8,0	12,0	63-71	80 - 100	112-160	≥ 180	
Α	11,0	8,7				90-112			≥ 450	
Б	14,0	10,8	4,2	12,5	19,0	125 - 160	180 - 224	250 - 500	≥ 560	
В	19,0	14,3	5,7	17,0	25,5	200 - 315	200 - 315	355 - 630	≥710	
Г	27,0	19,9	8,1	24,0	37,0	_	315-450	500 900	≥ 1000	
Д	32,0	23,4	9,6	29,0	41,5	-	500 – 56 0	630 — 1120	≥ 1250	

Примечание. Ширина обода шкива $B=(z-1)\,e+2f$, где z- число ремней в передаче.

 $L_{\rm p}$ — расчетная длина ремня, м; d_1 — диаметр меньшего шкива, м; n_1 — частота вращения, об/мин; σ_{-1} — предел выносливости, для клиновых ремней $\sigma_{-1} = 7$ МПа; $\sigma_{\rm max}$ — максимальное напряжение в сечении ремня, МПа, определяемое по формуле (7.18); C_i и $C_{\rm H}$ — коэффициенты, имеющие те же значения, что и в пояснении к формуле (7.22).

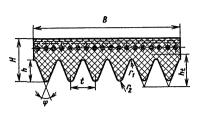
Последовательность расчета клиноременной передачи дана в табл. 7.11.

Шкивы клиноременных передач выполняют из чугуна СЧ 15 и СЧ 18, а при 30 м/с — из стали 25Л или алюминиевых сплавов.

Расчетные диаметры шкивов назначают из стандартного ряда, приведенного на с. 120. Конфигурация обода шкива и размеры канавок даны в табл. 7.12. Шероховатость рабочих поверхностей $Ra \le 2,5$ мкм. Шкивы диаметром до 300-400 мм выполняют преимущественно дисковыми, большего диаметра — со спицами; число их и форму определяют так же, как и для шкивов плоскоременных передач (см. § 7.1).

§ 7.3. ПЕРЕДАЧИ ПОЛИКЛИНОВЫМИ РЕМНЯМИ

Поликлиновые ремни (см. эскиз табл. 7.13) состоят из плоской и профильной частей. В плоской части размещено несколько слоев прорезиненной ткани и ряд кордшнура из синтетических волокон. Профильная часть, образуемая продольными клиньями, состоит из резины. Обе части свулканизованы в одно целое.


Поликлиновые ремни предназначены для замены отдельных клиновых ремней или их комплектов с целью сокращения габаритов. При передаче одинаковой мощности ширина поликлинового ремня может быть примерно в два раза меньше, чем у комплекта клиновых ремней.

Ремень сечения К применяют вместо клиновых ремней сечений О и А для передачи момента $T_1 \leqslant 40~\mathrm{H\cdot m}$; ремень сечения Л — вместо клиновых ремней А, Б и В для передачи момента $T_1 = 18 \div 400~\mathrm{H\cdot m}$; ремень сечения М — вместо клиновых ремней В, Г, Д и Е для передачи момента $T_1 > 130~\mathrm{H\cdot m}$ (где T_1 — момент на быстроходном валу). Если могут быть применены ремни двух сечений, предпочтение следует отдавать ремню с меньшим сечением.

В табл. 7.13 приведены размеры сечений поликлиновых ремней, их длины и числа клиньев z. Рекомендуют применять ремни с четным числом клиньев.

Размеры обода шкивов для поликлиновых ремней приведены в табл. 7.14. Там же помещены расчетные диаметры *D* и указаны

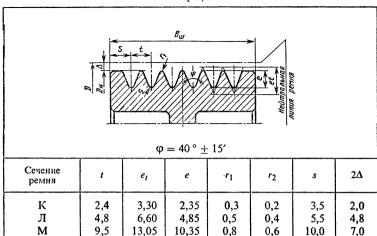
7.13. Поликлиновые ремни. Размеры, мм

 $\varphi = 40^{\circ}$

Сечение ремня	t	Н	r_1	r ₂	h
К	2,4	4,0	0,1	0,4	2,35
Л	4,8	9,5	0,2	0,7	4,85
М	9,5	16,7	0,4	1,0	10,35

Примечания. 1. Расчетные длины L ремней: 400, (425), 450, (475), 500, (530), 560, (600), 630, (670), (710), (750), 800, (850), 900, (950), 1000, (1060), 1120, (1180), 1250, (1320), 1400, (1500), 1600, (1700), 1800, (1900), 2000, (2120), 2240, (2360), 2500, (2650), 2800, (3000), 3150, (3350), 3550, (3750), 4000, (4250), 4500, (4750), 5000, (5300), 5600, (6000).

В скобках указаны нерекомендуемые длины ремней.


2. Расчетная длина ремней — это длина его на уровне центра расположения кордшнура, находящегося на расстоянии 0.5(H-h). Разность между расчетной и наружной длиной ремня: 6.3 мм — для ремней сечения K; 15.1 мм — для ремней сечения M.

3. Число клиньев z и диапазон длин L ремней:

TY	Сечение ремней					
Число клиньев	К	Л	M			
z рекомендуемое z предельное Диапазон длин L	2-36 36 400-2000	4-20 50 1250-4000	2-20 50 2000-6000			

Пример условного обозначения ремня: 2500 Л 16 РТМ 38-40528-74,
 где 2500 — расчетная длина, мм, Л — сечение ремня и 16 — число клиньев.

7.14. Шкивы для поликлиновых ремней. Размеры, мм

Примечания: 1. Расчетные диаметры D шкивов: 25, 40, 45, 50, 56, 63, 71, 80, 90, 100, 112, 125, 140, 160, 180, 200, 224, 250, 280, 315, 335, 400, 450, 500, 560, 630, 710, 800, 900, 1000.

2. За расчетный диаметр D принимают диаметр окружности на уровне центра расположения кордшнура. Наружный диаметр шкива $D_{\rm H} = D - 2\Delta$.

3. Диапазон расчетных диаметров шкивов: 25-500- для ремней сечения K; 80-800- для ремней сечения Л и 180-1000- для ремней сечения М.

наименьшие диаметры шкивов для ремней разных сечений. Табл. 7.13 и 7.14 составлены по PTM 38-40528 – 74.

Графики (рис. 7.5-7.7) предназначены для определения необходимого числа клиньев. Исходными данными для расчета передач поликлиновыми ремнями являются передаваемая мощность P, передаточное отношение i и коэффициент режима работы $K_{\rm p}$, значения которого для различных машин приближенно совпадают со значениями коэффициента $C_{\rm p}$, приведенными в табл. 7.4.

Рекомендуемые величины межосевых расстояний a в зависимости от передаточного отношения i:

$$i$$
 1 2 3 4 5 6 7 и более a/d_1 . . . 1,5 2 2,5 3 3,5 4 4,5

Диаметр меньшего шкива выбирают по следующей приближенной зависимости:

$$d_1 \approx 3\sqrt[3]{T_1} \tag{7.33}$$

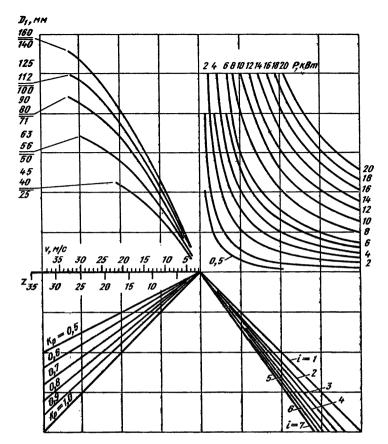


Рис. 7.5. Номограмма для определения числа клиньев поликлинового ремия сечением К

и округляют по стандарту (см. табл. 7.14). В этой формуле момент T_1 — в $H \cdot$ мм, диаметр d_1 — в мм.

Ниже приведены значения начальных натяжений на один клин поликлиновых ремней.

Пример. Рассчитать передачу поликлиновым ремнем к поршневому компрессору, работающему в две смены. Дано: передаваемая мощность $P=70\,$ кВт, частота вращения: $n_1=1300\,$ об/мин и $n_2=400\,$ об/мин.

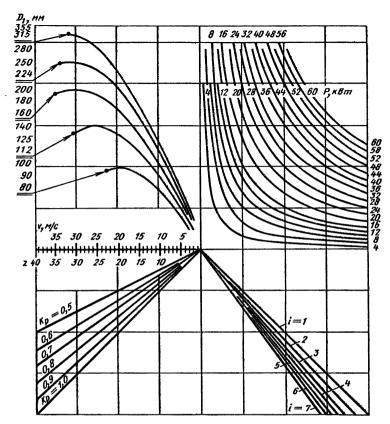


Рис. 7.6. Номограмма для определения числа клиньев поликлинового ремия сечением Л

Решение. 1. Коэффициент режима работы по табл. 7.4 для поршневого компрессора с учетом работы в две смены $K_p = 0.8$.

2. Расчетный момент на быстроходном валу

$$T_{1 p} \approx \frac{30P}{\pi n_1 K_p} = \frac{30 \cdot 70 \cdot 10^3}{3,14 \cdot 1300 \cdot 0,8} = 643 \text{ H} \cdot \text{M}.$$

- 3. При значении момента 643 H·м в соответствии с рекомендацией принимаем ремень сечения M.
 - 4. Диаметр меньшего шкива по формуле (7.33)

$$d_1 \approx 3\sqrt[3]{T_1} = 3\sqrt[3]{673 \cdot 10^3} = 258$$
 MM.

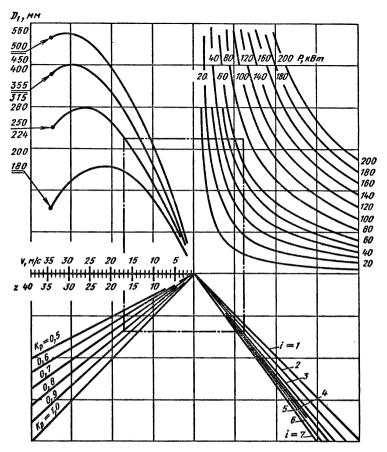


Рис. 7.7. Номограмма для определения числа клиньев поликлинового ремня сечением М

По табл. 7.14 принимаем ближайший $d_1 = D = 250$ мм.

5. Скорость ремня

$$v = \frac{\pi d_1 n_1}{60 \cdot 1000} = \frac{\pi 250 \cdot 1300}{60 \cdot 1000} = 17$$
 m/c.

6. Диаметр ведомого шкива

$$d_2 = d_1 \frac{n_1}{n_2} = 250 \frac{1300}{400} = 810 \text{ MM}.$$

По табл. 7.14 принимаем $d_2 = 800$ мм.

7. Передаточное число

$$i = \frac{d_2}{d_1} = \frac{800}{250} = 3.2.$$

- 8. Определяем необходимое число клиньев (см. рис. 7.7). Из точки оси абсцисс v=17 м/с проведем вертикаль до пересечения с кривой $d_1=250$ мм. Из полученной точки проведем горизонталь до пересечения с кривой мощности P=70 кВт (точка отмечена между кривыми 60 и 80 кВт). Затем из полученной точки проведем опять вертикаль до пересечения с линией i=3,2. Далее проведем горизонталь до пересечения с прямой $K_p=0,8$. Из последней точки проведем вертикаль, которая пересечет ось абсцисс в точке z=17,8.
 - 9. Примем окончательно четное число клиньев z = 18.
- 10. При i=3,2 межосевое расстояние $a\approx 2,6\,d_1=2,6\cdot 250=650$ мм.
 - 11. Длина ремня по формуле (7.7)

$$L = 2a + 0.5\pi (d_2 + d_1) + \frac{(d_2 - d_1)^2}{4a} =$$

$$= 2 \cdot 650 + 0.5 \cdot 3.14(800 + 250) + \frac{(800 - 250)^2}{4 \cdot 650} = 3066 \text{ MM}.$$

Принимаем по табл. 7.13 L = 3150 мм.

Условное обозначение ремня: 3150 M 18 PTM 38-40528-74.

12. Межосевое расстояние, выверенное по принятой длине ремня,

$$a = 0.25 \left[\left(L - \frac{d_2 + d_1}{2} \pi \right) + \sqrt{\left(L - \frac{d_2 + d_1}{2} \pi \right)^2 - 8 \left(\frac{d_2 - d_1}{2} \right)^2} \right] =$$

$$= 0.25 \left[(3150 - 1650) + \sqrt{1500^2 - 8 \cdot 275^2} \right] = 695 \text{ MM}.$$

13. Угол обхвата на малом шкиве

$$\alpha = 180^{\circ} - \frac{(d_2 - d_1) 60^{\circ}}{a} = 180^{\circ} - \frac{550 \cdot 60^{\circ}}{695} = 132^{\circ}30'.$$

14. Усилие, действующее на вал,

$$S = 2S_0 z \sin \frac{\alpha}{2} = 1200 \cdot 18 \cdot \sin 66^{\circ} 15' = 19800 \text{ H},$$

где $2S_0$ – см. с. 142.

15. Ширина шкивов (см. табл. 7.14)

$$B_{\text{III}} = (z - 1)t + 2s = (18 - 1)9,5 + 2 \cdot 10 = 182$$
 mm.

§. 7.4. ЦЕПНЫЕ ПЕРЕДАЧИ .

В приводах общего назначения, разрабатываемых в курсовых проектах, цепные передачи применяют в основном для понижения частоты вращения приводного вала. Наиболее распространены для этой цели приводные роликовые цепи однорядные (ПР) и двухрядные (2 ПР), показанные на рис. 7.8 и 7.9; технические данные их приведены в табл. 7.15 и 7.16. Цепи специальные — усиленные (ПРУ), длиннозвенные (ЦПРД), с изогнутыми пластинами (ПРИ), а также многорядные цепи нормального исполнения в курсовых проектах обычно не фигурируют; поэтому их технические характеристики, регламентированные ГОСТ 13568—75, здесь не приводятся.

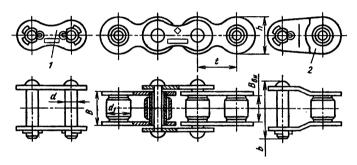


Рис. 7.8. Цепь роликовая однорядная: I — соединительное звено; 2 — переходное звено

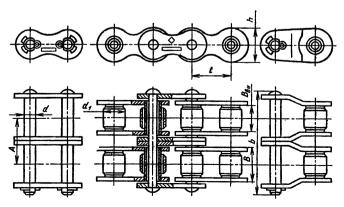


Рис. 7.9. Цепь роликовая двухрядная

7.15. Цени приводные роликовые одиорядные ПР (см. рис. 7.8) (по ГОСТ 13568 – 75*)

Размеры, мм	меры, мм	MM
-------------	----------	----

t	$B_{ m BH}$	đ	d_1	h	b	<i>Q</i> , кН	q, <u>κ</u> Γ Μ	А _{оп.} , мм²
9,525 12,7 15,875 19,05 25,4 31,75 38,1	5,72 7,75 9,65 12,7 15,88 19,05 25,4	3,28 4,45 5,08 5,96 7,95 9,55	6,35 8,51 10,16 11,91 15,88 19,05 22,23	8,5 11,8 14,8 18,2 24,2 30,2 36,2	17 21 24 33 39 46 58	9,1 18,2 22,7 31,8 60,0 88,5 127,0	0,45 0,75 1,0 1,9 2,6 3,8 5,5	28,1 39,6 54,8 105,8 179,7 262 394
44,45 50,8	25,4 25,4 31,75	12,72 14,29	25,4 28,58	42,4 48,3	62 72	172,4 226,8	7,5 9,7	473 646

 Π римечания: 1. Стандарт не распространяется на цепи для буровых установок.

3. Допускается снижение Q переходных звеньев на 20%.

7.16. Цепи приводиые ролнковые двухрядные 2ПР (см. рис. 7.9) (по ГОСТ 13568-75*) Размеры, мм

t	$B_{\rm BH}$	đ	d_1	h	ь	A	<i>Q</i> , кН	$q, \frac{K\Gamma}{M}$	А _{оп.} мм²
12,7	7,75	4,45	8,51	11,8	35	13,92	31,8	1,4	105
15,875	9,65	5,08	10,16	14,8	41	16,59	45,4	1,9	140
19,05	12,70	5,96	11,91	18,2	54	25,50	72,0	3,5	211
25,4	15,88	7,95	15,88	24,2	68	29,29	113,4	5,0	359
31,75	19,05	9,55	19,05	30,2	82	35,76	177,0	7,3	524
38,1	25,4	11,12	22,23	36,2	104	45,44	254,0	11,0	788
44,45	25,4	12,72	25,4	42,4	110	48,87	344,8	14,4	946
50,8	31,75	14,29	28,58	48,3	130	58,55	453,6	19,1	1292

Примечание. Обозначения такие же, как и в табл. 7.15; дополнительный размер A — расстояние между плоскостями, проходящими через середины роликов первого и второго рядов цепи.

При проектировании цепных передач следует избегать больших углов (>45°) между линией, соединяющей центры звездочек, и горизонтальной линией. Ведущую ветвь располагают, как правило, сверху. В передачах с большими углами подъема следует предусматривать натяжные устройства.

^{2.} Параметр $A_{\rm off}$, мм², означает проекцию опорной поверхности шарнира. Для цепей ПР $A_{\rm off}=0,28t^2$, за исключением цепи с шагом 15,875, для которой $A_{\rm off}=0,22t^2$, и цепей с шагом 9,525 и 12,7, для которых $A_{\rm off}=0,31t^2$. Шаг цепи t измеряют под нагрузкой, равной 0,01Q, где Q — разрушающая нагрузка, q — масса одного метра цепи.

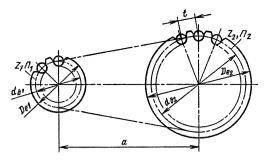


Рис. 7.10. Схема цепной передачи

Схема простой цепной передачи с двумя звездочками представлена на рис. 7.10. Главный параметр цепи — ее шаг t; остальные геометрические параметры передачи выражают в зависимости от шага:

рекомендуемое оптимальное межосевое расстояние

$$a = (30 \div 50) t$$
;

наибольшее $a_{\max} \leq 80t$; наименьшее $a_{\min} \geq 0.6 (D_{e1} + D_{e2}) + (30 \div 50)$ мм; делительный диаметр звездочки

$$d_{\rm a} = \frac{t}{\sin\frac{180^{\circ}}{z}},\tag{7.34}$$

где z — число зубьев звездочки; D_{e1} и D_{e2} — наружные диаметры звездочек, определяемые по ГОСТ 592—81:

$$D_e = t (K_z + 0.7) - 0.31d_1, (7.35)$$

где $K_z = \text{ctg} \, \frac{180}{z}; \, d_1$ – диаметр ролика (см. табл. 7.15).

Число зубьев малой звездочки — рекомендуемое (оптимальное) $z_1=31-2u$, где $u=\frac{z_2}{z_1}$ — передаточное число. При скорости цепи до 1 м/с допустимое минимальное значение $z_1\geqslant 11$.

Число зубьев большей звездочки $z_2 = z_1 u$, но не больше 120 во избежание соскакивания цепи. Число звеньев цепи

$$L_{t} = 2a_{t} + 0.5z_{\Sigma} + \frac{\Delta^{2}}{a_{t}}, \tag{7.36}$$

где
$$a_t = \frac{a}{t}$$
; $z_{\Sigma} = z_1 + z_2$; $\Delta = \frac{z_2 - z_1}{2\pi}$.

7.17. Допускаемые значения частоты вращения $[n_1]$, об/мин, малой звездочки для приводиых роликовых цепей нормальной серни ΠP н $2\Pi P$ (при $z_1 \ge 15$)

t, mm	[n ₁], об/мин	t, MM	[n ₁], об/мин		
12,7	1250	31,75	630		
15,875	1000	38,1	500		
19,05	900	44,45	400		
25,4	800	50,8	300		

Примечание. Для передач, защищенных от пыли, при спокойной работе и надежном смазывании допускается увеличение $[n_1]$ на 30%.

Полученное значение L_t округляют до целого числа, желательно четного, после чего уточняют межосевое расстояние

$$a = 0.25t \left[L_t - 0.5z_{\Sigma} + \sqrt{(L_t - 0.5z_{\Sigma})^2 - 8\Delta^2} \right]. \tag{7.37}$$

Для свободного провисания цепи предусматривают возможность уменьшения a на 0.2-0.4%. Средняя скорость цепи, м/с

$$v = \frac{z_1 t n_1}{60 \cdot 10^3},$$

где t - в мм, $n_1 - в$ об/мин.

Для открытых передач $v \le 7$ м/с. Допускаемая частота вращения меньшей звездочки n_1 , об/мин, приведена в табл. 7.17.

Расчет ценной передачи приводными роликовыми ценями. Главный параметр передачи — шаг цепи, мм, определяют из условия

$$t \ge 2.8 \sqrt[3]{\frac{T_1 K_5}{z_1 [p] m}},$$
 (7.38)

где T_1 — вращающий момент на валу меньшей звездочки, $H \cdot \text{мм}$; z_1 — число зубьев той же звездочки; [p] — допускаемое давление, приходящееся на единицу проекции опорной поверхности шарнира, МПа (численно равное $H/\text{мм}^2$); значения [p] даны в табл. 7.18; m — число рядов цепи; K_3 — коэффициент, учитывающий условия монтажа и эксплуатации цепной передачи; он равен произведению шести коэффициентов

$$K_3 = k_{\scriptscriptstyle A} k_{\scriptscriptstyle B} k_{\scriptscriptstyle B} k_{\scriptscriptstyle D} k_{\scriptscriptstyle CM} k_{\scriptscriptstyle B}$$

где $k_{\rm n}$ — динамический коэффициент: при спокойной нагрузке $k_{\rm n}=1$, при ударной нагрузке его принимают в зависимости от интенсивности ударов от 1,25 до 2,5; $k_{\rm a}$ учитывает влияние

7.18. Донускаемое давление в шарнирах цени [p], МПа (при $z_1 = 17$)

	Шаг цепи, мм											
<i>п</i> ₁ , об/мм	12,7	15,875	19,05	25,4	31,75	38,1	44,45	50,8				
50	46	43	39	36	34	31	29	27				
100	37	34	31	29	27	25	23	22				
200	29	27	25	23	22	19	18	17				
300	26	24	22	20	19	17	16	15				
500	22	20	18	17	16	14	13	12				
750	19	17	16	15	14	13						
1000	17	16	14	13	13	_	_	_				
1250	16	15	13	12	-	_	-	-				

Примечания: 1. Если $z_1 \neq 17$, то табличные значения [p] умножают на $k_z = 1+0.01$ (z_1-17) .

2. Для двухрядных цепей значения [р] уменьшают на 15%.

межосевого расстояния: при $a=(30\div 50)\,t$ принимают $k_a=1$; при увеличении a снижают k_a на 0,1 на каждые 20t сверх a=50t; при $a\leqslant 25t$ принимают $k_a=1,25;\ k_H$ — учитывает влияние наклона цепи: при наклоне до $60^\circ\ k_H=1$; при наклоне свыше $60^\circ\ k_H=1,25$, но при автоматическом регулировании натяжения цепи принимают $k_H=1$ при любом наклоне; k_P принимают в зависимости от способа регулирования натяжения цепи: при автоматическом регулировании $k_P=1$, при периодическом $k_P=1,25;\ k_{CM}$ принимают в зависимости от способа смазывания цепи: при картерной смазке $k_{CM}=0,8$; при непрерывной смазке $k_{CM}=1$; при периодической $k_{CM}=1,3\div 1,5;\ k_{TM}$ учитывает периодичность работы передачи: $k_T=1$ при работе в одну смену, при двухсменной $k_T=1,25$; при трехсменной $k_T=1,5$.

Так как величина [p], входящая в формулу (7.38), зависит от определяемого главного параметра — шага цепи (см. табл. 7.18), то задачу решают методом последовательных приближений: предварительно принимают ориентировочное значение [p] в соответствии с предполагаемым значением t, затем определяют t, округляют его до стандартного значения (ближайшего большего) и уточняют значение расчетного p, определяемого из выражения

 $p = \frac{F_t K_3}{A_{or}},\tag{7.39}$

где F_t — окружная сила; K_3 — коэффициент, указанный выше; $A_{\rm on}$ — проежция опорной поверхности шарнира (см. табл. 7.15 и 7.16).

Вычисленное значение p не должно превышать допускаемого [p]. Если это условие не выполнено, то следует просчитать варианты — с цепью большего шага или с двухрядной цепью. Если расчетное значение p окажется значительно меньше [p], то следует просчитать варианты с цепями меньшего шага. Такие расчеты целесообразно выполнять с помощью ЭВМ. Вычислив параметры передачи по формулам (7.34) — (7.37), проверяют выбранную цепь на прочность, определяя коэффициент запаса прочности

$$s = \frac{Q}{F_t k_n + F_n + F_f},\tag{7.40}$$

где Q — разрушающая нагрузка, H (в табл. 7.15 и 7.16 она приведена в кH, поэтому следует умножить табличное значение на 10^3); F_t — окружная сила; k_{π} — динамический коэффициент, указанный выше; $F_v = qv^2$ — центробежная сила; $F_f = 9.81 k_f qa$ — сила от провисания цепи, H [k_f — коэффициент, учитывающий расположение цепи: при горизонтально расположенной цепи $k_f = 6$; при наклонной (под 45°) $k_f = 1.5$; при вертикальной $k_f = 1$]. Расчетный коэффициент запаса прочности s должен удовлетворять условию $s \ge [s]$, где [s] — нормативный коэффициент по табл. 7.19.

7.19. Нормативные коэффициенты запаса прочности [s] приводных роликовых цепей нормальной серии ПР и 2ПР

	Шаг цепи, мм										
#1, об/мин	12,7	15,875	19,05	25,4	31,75	38,1	44,45	50,8			
50	7,1	7,2	7,2	7,3	7,4	7,5	7,6	7,6			
100	7,3	7,4	7,5	7,6	7,8	8,0	8,1	8,3			
300	7,9	8,2	8,4	8,9	9,4	9,8	10,3	10,8			
500	8,5	8,9	9,4	10,2	11,0	11,8	12,5	_			
750	9,3	10,0	10,7	12,0	13,0	14,0	_	-			
1000	10,0	10,8	11,7	13,3	15,0	_	_	_			
1250	10,6	11,6	12,7	14,5		_	- 1	_			

Пример. Рассчитать передачу приводной роликовои цепью (см. рис. 1.1).

Исходные данные: цепная передача расположена между редуктором и скребковым конвейером. Передаваемая мощность $P=10\,$ кВт. Частоты вращения: ведущей звездочки $n_1=360\,$ об/мин, ведомой $n_2=115\,$ об/мин. Угол между линиями центров и горизонтальной 45° ; смазывание периодическое, работа в одну смену.

Порядок расчета. 1. Выбираем цепь приводную роликовую однорядную ПР (по ГОСТ 13568—75) и определяем шаг ее по формуле (7.38); предварительно вычисляем величины, входящие в эту формулу:

а) вращающий момент на валу ведущей звездочки

$$T_1 = \frac{P}{\omega_1} = \frac{30P}{\pi n_1} = \frac{30 \cdot 10 \cdot 10^3}{3.14 \cdot 360} = 266 \cdot 10^3 \text{ H} \cdot \text{MM};$$

б) коэффициент

$$K_{\mathfrak{I}} = k_{\mathfrak{I}} k_{\mathfrak{I}} k_{\mathfrak{I}} k_{\mathfrak{I}} k_{\mathfrak{I}} k_{\mathfrak{I}} k_{\mathfrak{I}};$$

в соответствии с исходными данными принимаем: $k_{\alpha} = 1,25$ (передача к скребковому конвейеру характеризуется умеренными ударами);

 $k_a = 1$ [так как следует принять a = (30 - 50) t];

 $k_{\rm H} = 1$ (так как угол наклона цепи 45°);

 $k_{\rm p} = 1,25$ (регулирование натяжения цепи периодическое);

 $k_{\rm cm} = 1,5$ (смазывание цепи периодическое);

 $k_{\rm n} = 1$ (работа в одну смену).

Следовательно, $K_9 = 1,25 \cdot 1,25 \cdot 1,5 = 2,33$;

в) числа зубьев звездочек: ведущей

$$z_1 = 31 - 2u = 31 - 2\frac{360}{115} \approx 25$$

(здесь передаточное число $u = \frac{n_1}{n_2} = \frac{360}{115} = 3,15$); ведомой

$$z_2 = z_1 u = 25 \cdot 3,15 \approx 79;$$

- г) среднее значение [p] принимаем ориентировочно по табл. 7.18: [p] = 20 МПа; число рядов цепи m = 1;
 - д) по формуле (7.38) находим шаг цепи

$$t = 2.8 \sqrt[3]{\frac{T_1 K_3}{z_1 [p] m}} = 2.8 \sqrt[3]{\frac{266 \cdot 10^3 \cdot 2.33}{25 \cdot 20 \cdot 1}} \approx 30 \text{ mm}.$$

По табл. 7.15 принимаем ближайшее большее значение t = 31,75 мм; проекция опорной поверхности шарнира $A_{\rm on} = 262$ мм²; разрушающая нагрузка Q = 88,5 кH; q = 3,8 кг/м.

- 2. Проверяем цепь по двум показателям:
- а) по частоте вращения по табл. 7.17 допускаемая для цепи с шагом t=31,75 частота вращения $[n_1]=630$ об/мин, условие $n_1\leqslant [n_1]$ выполнено;

б) по давлению в шарнирах — по табл. 7.18; для данной цепи при 360 об/мин значение $[p] = 18,1\,$ МПа, а с учетом примечания к табл. 7.18 $[p] = 18,1\,$ $[1+0,01\,(25-17)] = 19,6\,$ МПа; расчетное давление по формуле (7.39)

$$p = \frac{F_t K_3}{A_{on}} = \frac{2100 \cdot 2{,}33}{262} = 18{,}7 \text{ M}\Pi a;$$

здесь
$$F_t = \frac{P}{v} = \frac{10 \cdot 10^3}{4.76} = 2100$$
 H,

где

$$v = \frac{z_1 t n_1}{60 \cdot 10^3} = \frac{25 \cdot 31,75 \cdot 360}{60 \cdot 10^3} = 4,76 \text{ M/c}.$$

Условие $p \leq \lceil p \rceil$ выполнено.

3. Определяем число звеньев цепи по формуле (7.36); предварительно находим суммарное число зубьев

$$z_{\Sigma} = z_1 + z_2 = 25 + 79 = 104;$$

поправка

$$\Delta = \frac{z_2 - z_1}{2\pi} = \frac{79 - 25}{2 \cdot 3.14} = 8.6; \ a = 40t; \ a_t = \frac{a}{t} = 40.$$

По формуле (7.36)

$$L_t = 2a_t + 0.5z_{\Sigma} + \frac{\Delta^2}{a_t} = 2.40 + 0.5 \cdot 104 + \frac{8.6^2}{40} = 133.8.$$

Округляем до четного числа $L_t = 134$.

4. Уточняем межосевое расстояние по формуле (7.37)

$$a = 0.25t \left[L_t - 0.5z_{\Sigma} + \sqrt{(L_t - 0.5z_{\Sigma})^2 - 8\Delta^2} \right] =$$

$$= 0.25 \cdot 31.75 \left[134 - 0.5 \cdot 104 + \sqrt{(134 - 0.5 \cdot 104)^2 - 8 \cdot 8.6^2} \right] =$$

$$= 1273 \text{ MM}.$$

Для свободного провисания цепи предусматриваем возможность уменьшения межосевого расстояния на 0.4%, т. е. на $1273 \cdot 0.004 \approx 5$ мм.

5. Определяем диаметры делительных окружностей звездочек по формуле (7.34):

ведущей

$$d_{\pi 1} = \frac{t}{\sin \frac{180^{\circ}}{z_1}} = \frac{31,75}{\sin \frac{180}{25}} = 252,2 \text{ mm};$$

ведомой

$$d_{\rm a2} = \frac{31,75}{\sin\frac{180}{79}} = 800,1 \text{ MM}.$$

6. Определяем диаметры наружных окружностей звездочек по формуле (7.35):

ведущей

$$D_{e1} = t \left(\text{ctg} \, \frac{180}{z_1} + 0.70 \right) - 0.31 \, d_1 =$$

$$= 31.75 \left(\text{ctg} \, \frac{180}{25} + 0.70 \right) - 0.31 \cdot 19.05 = 266.3 \text{ mm};$$

здесь d_1 — диаметр ролика цепи; по табл. 7.15 $d_1 = 19{,}05$ мм; ведомой

$$D_{e2} = 31,75 \left(\text{ctg} \, \frac{180}{79} + 0,70 \right) - 0,31 \cdot 19,05 = 814,2 \text{ MM}.$$

7. Определяем силы, действующие на цепь: окружная $F_t = 2100$ H (вычислена выше, см. п. 2, б); центробежная $F_v = qv^2 = 3.8 \cdot 4.76^2 = 86$ H; от провисания цепи $F_f = 9.81 k_f qa = 9.81 \cdot 1.5 \cdot 3.8 \cdot 1.27 = 71$ H; расчетная нагрузка на валы

$$F_{\rm B} = F_t + 2F_f = 2100 + 2 \cdot 71 = 2242$$
 H.

8. Проверяем коэффициент запаса прочности s по формуле (7,40)

$$s = \frac{Q}{k_a F_t + F_v + F_f} = \frac{88,5 \cdot 10^3}{1,25 \cdot 2100 + 86 + 71} \approx 32.$$

Нормативный коэффициент запаса прочности по табл. 7.19 [s] = 10.1; условие $s \ge [s]$ выполнено.

Цепь приводная зубчатая показана на рис. 7.11, ее параметры приведены в табл. 7.20.

Диаметры окружностей звездочек: делительной

$$d_{A}=\frac{t}{\sin\frac{180^{\circ}}{z}};$$

наружной

$$D_e = \frac{t}{\text{tg } \frac{180^\circ}{5}}.$$

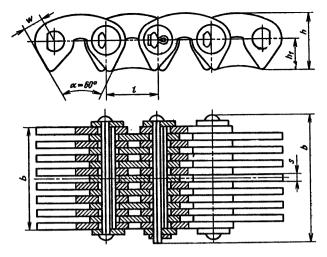


Рис. 7.11. Цепь зубчатая с шарнирами качения

7.20. Цепи зубчатые с односторонним зацеплением (по ГОСТ 13552-81). Обозначения по рис. 7.11. Размеры, мм

Общие параметры цепи	ь	<i>b</i> ₁	<i>b</i> ₂	<i>Q</i> , кН	<i>q</i> , кг/м
$t = 12,7$ $h = 13,4;$ $h_1 = 7,0;$ $s = 1,5;$ $w = 4,76$	22,5 28,5 34,5 40,5 46,5 52,5	28,5 34,5 40,5 46,5 52,5 58,5	31,5 37,5 43,5 49,5 55,5 61,5	26 31 36 42 49 56	1,31 1,60 2,00 2,31 2,70 3,00
t = 15,875; h = 16,7 $h_1 = 8,7$ s = 2,0; w = 5,95	30,0 38,0 46,0 54,0 62,0 70,0	38,0 46,0 54,0 62,0 70,0 78,0	41,0 49,0 57,0 63,0 73,0 81,0	41 50 58 69 80 91	2,21 2,71 3,30 3,90 4,41 5,00
t = 19,05;h = 20,1;h1 = 10,5;s = 3,0; w = 7,14	45,0 57,0 69,0 81,0 93,0	54,0 66,0 78,0 90,0 102,0	56,0 68,0 80,0 92,0 104,0	74 89 105 124 143	3,90 4,90 5,91 7,00 8,00

Общие параметры цепи	ь	<i>b</i> ₁	b ₂	<i>Q</i> , кН	q , кг/м
$t = 25,4;h = 26,7;h_1 = 13,35;s = 3,0; w = 9,52$	57.0	66,0	68,0	101	8,40
	75,0	84,0	86,0	132	10,80
	93,0	102,0	104,0	164	13,20
	111,0	120,0	122,0	196	15,40
$t = 31,75h = 33,4; h_1 = 16,7;s = 3,0; w = 11,91$	75,0	85,0	88,0	166	14,35
	93,0	103,0	106,0	206	16,55
	111,0	121,0	124,0	246	18,80
	129,0	139,0	142,0	286	21,00

П р и м е ч а н и е. Q — разрушающая нагрузка, к \mathbf{H} ; q — масса одного метра цепи, кг/м

Пример условного обозначения зубчатой цепи типа 1 (с односторонним зацеплением) с шагом $t=15.875,\ Q=69\ \mathrm{kH},\ b=54\ \mathrm{mm}$:

Цепь ПЗ-1-15, 875-69-54 ГОСТ 13552-81

Числа зубьев звездочек: $z_1 = 37 - 2u$ (но не меньше 17), $z_2 = z_1 u$ (но не больше 140); здесь $u = \frac{n_1}{n_2} = \frac{z_2}{z_1}$. Параметры цепной передачи — межосевое расстояние a, длину цепи L — определяют по формулам (7.36) и (7.37). Силы, действующие в передаче, определяют так же, как и в случае передачи роликовыми цепями [см. формулу (7.40) и пояснения к ней].

Главный параметр зубчатой цепи — ее ширину в мм, определяют по формуле

$$b \ge 10 \frac{PK_3}{[P_{10}]}.$$
 (7.41)

Здесь P — передаваемая мощность, кВт; коэффициент K_3 имеет то же значение, что и в передаче роликовой цепью [см. формулу (7.38) и пояснения к ней]; $[P_{10}]$ — мощность, кВт, допускаемая для передачи зубчатой цепью шириной 10 мм (см. табл. 7.21). Так как значения P_{10} приведены в таблице в зависимости от шага t и скорости v, а в начале расчета эти величины неизвестны, то приходится выполнять расчет методом последовательных приближений: принимая предварительно ориентировочное значение шага t, находят скорость цепи $v = \frac{z_1 t n_1}{60 \cdot 10^3}$ м/с; по этим величинам определяют из табл. 7.21 значение $[P_{10}]$ и вычисляют по формуле (7.41) ширину цепи b. Полученный результат округляют до ближайшего большего

значения по табл. 7.20. Оптимальные результаты могут быть

7.21. Значения $[P_{10}]$, кВт, для приводных зубчатых цепей типа 1 (одностороннего зацепления) условной ширийой 10 мм

	Скорость цепи v , м/с									
<i>t</i> , MM	1	2	3	4	6	8	10			
12,7 15,875 19,05 25,4 31,75	0,4 0,6 0,8 1,0 1,2	0,8 1,0 1,2 1,6 2,0	1,0 1,3 1,6 2,1 2,6	1,3 1,6 1,9 2,6 3,2	1,6 2,1 2,5 3,4 4,2	2,0 2,5 3,0 4,0 5,1	2,35 3,0 3,5 4,6 5,9			

получены на основе просчета ряда вариантов на ЭВМ с различными сочетаниями величин t, z_1 , b; при этом исходные данные $(P, n_1, n_2,$ условия монтажа и эксплуатации) не должны, как правило, изменяться.

7.22. Нормативный коэффициент запаса прочности [s] приводных зубчатых цепей типа 1 (с односторонним зацеплением)

	Частота вращения меньшей звездочки n_1 , об/мин									
<i>t</i> , MM	50	100	200	300	400	500	600	800	1000	
12,7 15,875 19,05 25,4 31,75	20 20 21 21 21 21	21 21 22 22 22 22	22 22 23 24 25	23 24 24 26 26	24 25 26 28 30	25 26 28 30 32	26 27 29 32 35	28 30 32 36 40	30 32 35 40	

Расчет заканчивается определением геометрических параметров передачи, нагрузок, действующих в ней, проверкой коэффициента прочности цепи — аналогично тому, как это изложено выше в расчете передачи приводными роликовыми цепями, с тем, однако, отличием, что расчетный коэффициент прочности должен быть не меньше нормативного [s], указанного в табл. 7.22.

§ 8.1. НАГРУЗКИ ВАЛОВ

В процессе эксплуатации валы передач испытывают деформации от действия внешних сил, масс самих валов и насаженных на них деталей. Однако в типовых передачах, разрабатываемых в курсовых проектах, массы валов и деталей, насаженных на них, сравнительно невелики, поэтому их влиянием обычно пренебретают, ограничиваясь анализом и учетом внешних сил, возникающих в процессе работы.

В цилиндрической прямозубой передаче силу в зацеплении одной пары зубьев раскладывают на две взаимно перпендикулярные составляющие (рис. 8.1, а):

окружную силу

$$F_t = P/v \tag{8.1}$$

и радиальную

$$F_r = F_t \operatorname{tg} \alpha. \tag{8.2}$$

Здесь F_t и F_r – в H; P – передаваемая мощность, Вт; v – окружная скорость, м/с; α – угол зацепления.

В цилиндрической косозубой передаче силу в зацеплении раскладывают на три составляющие (рис. 8.1, б):

окружную F_t , определяемую по формуле (8.1); радиальную

$$F_r = F_t \frac{\lg \alpha}{\cos \beta},\tag{8.3}$$

осевую

$$F_a = F_t \operatorname{tg} \beta. \tag{8.4}$$

Здесь α — угол зацепления в нормальном сечении; β — угол наклона зубьев.

В иилиндрической шевронной передаче (рис. 8.1, а) осевые силы, деиствующие на каждую половину шеврона, уравнове-

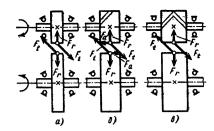


Рис. 8.1. Силы в зацеплении цилиндрических зубчатых колес: a — прямозубых; δ — косозубых; δ — шевронных

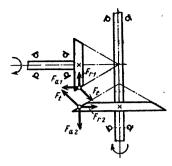


Рис. 8.2. Силы в зацеплении конических прямозубых колес

шиваются. Радиальную и осевую силы определяют так же, как и для косозубой передачи.

В конической прямозубой передаче (рис. 8.2) окружная сила

$$F_{t} = \frac{P}{v_{\rm cp}},\tag{8.5}$$

где $v_{\rm cp}$ – окружная скорость на среднем диаметре зубчатого колеса, м/с; P – передаваемая мощность, $B_{\rm T}$;

радиальная сила на шестерне $F_{r,1}$ и осевая на колесе F_{a2} равны, но направлены в противоположные стороны:

$$F_{r1} = F_{a2} = F_t \operatorname{tg} \alpha \sin \delta_2; \tag{8.6}$$

аналогично осевая сила на шестерне F_{a1} равна радиальной силе на колесе F_{r2} :

$$F_{\alpha 1} = F_{\alpha 2} = F_1 \operatorname{tg} \alpha \sin \delta_1; \tag{8.7}$$

здесь δ_1 и δ_2 — углы при вершинах начальных конусов; они связаны с передаточным числом u зависимостью

$$\operatorname{tg} \delta_2 = \operatorname{ctg} \delta_1 = u. \tag{8.8}$$

В передачах коническими колесами с косыми или криволинейными зубьями окружную силу F_t определяют по формуле (8.5); радиальная сила на шестерне F_{r1} равна осевой силе на колесе F_{a2} :

$$F_{r1} = F_{a2} = F_t \frac{\sin \delta_1}{\cos \beta} (u \operatorname{tg} \alpha \mp \sin \beta); \tag{8.9}$$

осевая сила на шестерне F_{a1} равна радиальной силе на колесе F_{r2} .

8.1. Выбор знаков перед вторым слагаемым в формулах (8.9) и (8.10)

Направление вращения шестерни (если смотреть	Направление наклона	Знак перед вторым слагаемым в формуле			
со стороны основания конуса к его вершине)	зуба				
По часовой стрелке	Правое Левое	+	- +		
Против часовой стрелки	асовой стрелки Правое Левое				

$$F_{a1} = F_{r2} = F_t \frac{\sin \delta_1}{\cos \beta} (\operatorname{tg} \alpha \pm \sin \beta). \tag{8.10}$$

Здесь β — угол наклона линии зуба в середине ширины зубчатого венца; знак перед вторым слагаемым в скобках выбирают по табл. 8.1.

Если F_{a1} получится со знаком минус, то вектор этой силы следует направить к вершине конуса. При положительном значении силы F_{r1} ее вектор надо направить от точки контакта зубьев к центру шестерни. Вектор F_{r2} должен быть направлен противоположно вектору F_{a1} , а вектор F_{a2} — противоположно вектору F_{r1} .

В червячной передаче (рис. 8.3) окружная сила на червяке F_{t1} и осевая на колесе F_{a2} равны, но противоположно направлены:

$$F_{t1} = F_{a2} = \frac{2T_1}{d_1}. (8.11)$$

Такое же соотношение окружной силы на колесе и осевой силы на червяке

$$F_{t2} = F_{a1} = \frac{2T_2}{d_2}. (8.12)$$

Радиальные силы

$$F_{r1} = F_{r2} = F_{t2} \operatorname{tg} \alpha.$$
 (8.13)

Здесь T_1 и T_2 — вращающие моменты на валах соответственно

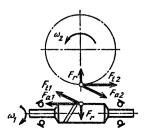


Рис. 8.3. Силы в зацеплении червячной пары

червяка и колеса, $H \cdot \text{мм}$; d_1 и d_2 — делительные диаметры червяка и колеса, мм.

В ременной передаче нагрузка на валы $F_{\rm B}$ равна геометрической сумме натяжений $F_{\rm 1}$ и $F_{\rm 2}$ ветвей ремня; при угле обхвата меньшего шкива $\alpha \leqslant 150^{\circ}$ принимают

$$F_{\rm B} = 2F_0 \sin \frac{\alpha_1}{2};$$
 (8.14)

здесь $F_0 = \sigma_0 A$, где σ_0 — напряжение от предварительного натяжения ремней; A — площадь поперечного сечения ремня (в случае клиноременной передачи — площадь поперечного сечения всех ремней рассчитываемой передачи).

В ценной передаче нагрузка на валы звездочек, направленная по линии центров звездочек,

$$F_{\rm R} = F_{\rm t} + 2.9,81k_{\rm f}qa, \tag{8.15}$$

где F_t — окружная сила на звездочке; k_f — коэффициент, учитывающий влияние провисания цепи; q — масса одного метра цепи, кг/м; значения k_f и q приведены в гл. VII; a — межосевое расстояние, м.

При расчете валов редукторов общего назначения следует учитывать возможные консольные нагрузки $F_{\rm K}$, приложенные в середине посадочной части вала. По ГОСТ 16162-78 для быстроходного вала одноступенчатого зубчатого редуктора при вращающемся моменте $T_{\rm B} \leqslant 25~{\rm H}\cdot{\rm M}$ консольная нагрузка; H, $F_{\rm KB} = 50\sqrt{T_{\rm B}}$; при $T_{\rm B} > 25~{\rm дo}~T_{\rm B} \leqslant 250~{\rm H}\cdot{\rm M}~F_{\rm KB} = 80\sqrt{T_{\rm B}}$. Такое же значение $F_{\rm KB}$ принимают и для быстроходного вала червячного редуктора. Для тихоходного вала при $T_{\rm T} \geqslant 250~{\rm H}\cdot{\rm M}$ консольная нагрузка $F_{\rm KT} = 125\sqrt{T_{\rm T}}$.

§ 8.2. РАСЧЕТ ВАЛОВ

Проектирование вала начинают с определения диаметра выходного конца его из расчета на чистое кручение по пониженному допускаемому напряжению без учета влияния изгиба

$$d \geqslant \sqrt[3]{\frac{16T}{\pi \left[\tau_{\kappa}\right]}},\tag{8.16}$$

где T— крутящий момент, $H \cdot \text{мм}$; $[\tau_{\kappa}]$ — допускаемое напряжение на кручение; для валов из сталей 40, 45, Ст6 принимают пониженное значение $[\tau_{\kappa}] = 15 \div 20 \text{ M}\Pi \text{a}$ ($H/\text{мм}^2$). Полученный результат округляют до ближайшего большего значения из стандартного ряда: 10; 10,5; 11; 11,5; 12; 13; 14; 15; 16; 17; 18;

19; 20; 21; 22; 24; 25; 26; 28; 30; 32; 33; 34; 36; 38; 40; 42; 45; 48; 50; 52; 55 60; 63; 65; 70; 75; 80; 85; 90; 95; 100; 105; 110; 120; 125; 130 и далее через 10 мм.

Примечание. В случае необходимости допускаются диаметры: в интервале от 12 до 26 мм — кратные 0,5; в интервале 26-30 — целые числа; в интервале 50-110 — размеры, оканчивающиеся на 2 и 8, далее — размеры, кратные 5.

Для редукторов общего назначения рекомендуется изготовлять валы одинакового диаметра по всей длине; допуски на отдельных участках вала назначают в соответствии с требуемыми посадками насаживаемых деталей. Однако для облегчения монтажа подшипников, зубчатых колес и других деталей применяют и ступенчатую конструкцию вала. Для удобства соединения вала редуктора с валом электродвигателя стандартной муфтой соблюдают условие, чтобы диаметры соединяемых валов имели размеры, отличающиеся не более чем на 20%.

Наметив конструкцию вала, установив основные размеры его (диаметры и длины участков вала, расстояния между серединами опор и др.), выполняют уточненный проверочный расчет, заключающийся в определении коэффициентов запаса прочности s в опасных сечениях:

$$s = \frac{s_{\sigma}s_{\tau}}{\sqrt{s_{\sigma}^2 + s_{\tau}^2}}.$$
 (8.17)

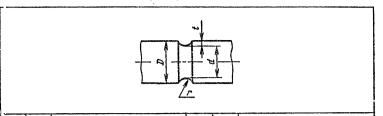
Расчетное значение s должно быть не ниже допускаемого [s] = 2,5.

При условии выполнения специального расчета вала на жесткость допускается снижение [s] до 1,7.

В формуле (8.17) s_{σ} – коэффициент запаса прочности по нормальным напряжениям,

$$s_{\sigma} = \frac{\sigma_{-1}}{\frac{k_{\sigma}}{\varepsilon_{\sigma}\beta}\sigma_{v} + \psi_{\sigma}\sigma_{m}},$$
(8.18)

где σ_{-1} — предел выносливости стали при симметричном цикле изгиба; для углеродистых конструкционных сталей $\sigma_{-1}=0,43\sigma_{\rm B}$; для легированных $\sigma_{-1}=0,35\sigma_{\rm B}+(70\div120)$ МПа; k_{σ} — эффективный коэффициент концентрации нормальных напряжений (табл. 8.2 – 8.7); ϵ_{σ} — масштабный фактор для нормальных напряжений (табл. 8.8); β — коэффициент, учитывающий влияние шероховатости поверхности: при $Ra=0,32\div2,5$ мкм принимают $\beta=0,97\div0,90$; σ_{v} — амплитуда цикла нормальных напряжений, равная наибольшему напряжению изгиба $\sigma_{\rm B}$ в рас-

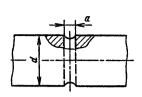

8.2. Значения коэффициентов k_{σ} и k_{τ} для валов с галтелями

_			Вал	ы из с	гали, и	меющей	σ _в , Μ	Па		
$\frac{D}{d}$	$\frac{r}{d}$	600	700	800	900	600	700	800	900	
a	а		k	σ			k	Ţ		
До 1,1	0,02	1,96	2,08	2,20	2,35	1,30	1,35	1,41	1,45	
, ,	0,04	1,66	1,69	1,75	1,81	1,20	1,24	1,27	1,29	
	0,06	1,51	152	1,54	1,57	1,16	1,18	1,20	1,23	
	0,08	1,40	1,41	1,42	1,44	1,12	1,14	1,16	1,18	
	0,10	1,34	1,36	1,37	1,38	1,09	1,11	1,13	1,15	
	0,15	1,25	1,26	1,27	1,29	1,06	1,07	1,08	1,09	
	0,20	1,19	1,21	1,22	1,23	1,04	1,05	1,06	1,07	
Св. 1,1 до	0,02	2,34	2,51	2,68	2,89	1,50	1,59	1,67	1,74	
1,2	0,04	1,92	1,97	2,05	2,13	1,33	1,39	1,45	1,48	
	0,06	1,71	1,74	1,76	1,80	1,26	1,30	1,33	1,37	
	0,08	1,56	1,58	1,59	1,62	1,18	1,22	1,26	1,30	
	0,10	1,48	1,50	1,51	1,53	1,16	1,19	1,21	1,24	
	0,15	1,35	1,37	1,38	1,40	1,10	1,11	1,14	1,16	
	0,20	1,27	1,29	1,30	1,32	1,06	1,08	1,10	1,13	
Св. 1,2 до 2	0,02	2,40	2,60	2,80	3,00	1,70	1,80	1,90	2,00	
	0,04	2,00	2,10	2,15	2,25	1,46	1,53	1,60	1,65	
	0,06	1,85	1,88	1,90	1,96	1,35	1,40	1,45	1,50	
	0,08	1,66	1,68	1,70	1,73	1,25	1,30	1,35	1,40	
	0,10	1,57	1,59	1,61	1,63	1,21	1,25	1,28	1,32	
	0,15	1,41	1,43	1,45	1,47	1,12	1,15	1,18	1,20	
L	0,20	1,32	1,34	1,36	1,38	1,07	1,10	1,14	1,16	

сматриваемом сечении; σ_m — среднее напряжение цикла нормальных напряжений; если осевая нагрузка F_a на вал отсутствует или пренебрежимо мала, то принимают $\sigma_m = 0$; в противном случае

$$\sigma_m = \frac{F_a}{\frac{\pi d^2}{4}};$$

коэффициент
$$\psi_{\sigma} = \frac{2\sigma_{-1} - \sigma_0}{\sigma_0}$$
:

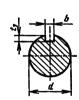

$\frac{1}{r}$	$\frac{r}{d}$	из	k_{σ} для стали, $\sigma_{\rm B}$,	валов имеюще МПа	й	$\frac{D}{d}$	$\frac{r}{d}$	k_{τ} для валов из стали, имеющей $\sigma_{\rm B}, \ {\rm M\Pi a}$				
l ′	"	≤ 600	700	800	900	и	"	≤ 600	700	800	900	
До 1,0	0,02 0,04 0,06 0,08	1,85 1,80 1,75 1,70 1,65	1,95 1,85 1,80 1,75 1,70	2,10 2,00 1,90 1,80 1,75	2,25 2,10 1,95 1,90 1,80	До 1,1	0,02 0,04 0,06 0,08 0,10	1,29 1,27 1,25 1,21 1,18	1,32 1,30 1,29 1,25 1,21	1,39 1,37 1,36 1,32 1,29	1,46 1,43 1,41 1,39 1,32	
	0,10 0,15	1,55	1,70	1,73	1,65		0,10	1,16	1,18	1,29	1,32	
Св. 1,0 до 1,5	0,02 0,04 0,06 0,08 0,10 0,15	1,89 1,84 1,78 1,73 1,68 1,58	1,99 1,89 1,84 1,78 1,73 1,60	2,15 2,05 1,94 1,84 1,78 1,63	2,31 2,15 1,99 1,94 1,84 1,68	Св. 1,1 до 1,2	0,02 0,04 0,06 0,08 0,10 0,15	1,37 1,35 1,32 1,27 1,23 1,18	1,41 1,37 1,36 1,32 1,27 1,23	1,50 1,47 1,46 1,41 1,37 1,27	1,59 1,62 1,52 1,50 1,41 1,37	
Св 1,5 до 2,0	0,02 0,04 0,06 0,08 0,10 0,15	1,76 1,71	2,04 1,93 1,87 1,82 1,76 1,62	2,20 2,09 1,98 1,87 1,82 1,66	2,37 2,20 2,04 1,98 1,87 1,71	Св. 1,2 до 1,4	0,02 0,04 0,06 0,08 0,10 0,15		1,45 1,42 1,40 1,35 1,30 1,25	1,55 1,52 1,50 1,45 1,40 1,30	1,65 1,60 1,57 1,55 1,45 1,35	

для углеродистых сталей, имеющих $\sigma_{\rm B}=650\div750$ МПа, принимают $\psi_{\sigma}=0,2$; для легированных сталей $\psi_{\sigma}=0,25\div0,30$; $s_{\rm t}$ — коэффициент запаса прочности по касательным напряжениям,

$$s_{\tau} = \frac{\tau_{-1}}{\frac{k_{\tau}}{\varepsilon_{\tau}\beta}\tau_{\nu} + \psi_{\tau}\tau_{m}}.$$
 (8.19)

Здесь τ_{-1} – предел выносливости стали при симметричном цикле кручения; для конструкционных сталей принимают $\tau_{-1} = 0,58\,\sigma_{-1}$, остальные обозначения в формуле (8.19) имеют тот же смысл, что и в формуле (8.18), с той разницей, что они

8.4. Значения k_{σ} и $k_{\mathcal{T}}$ для валов с радиальными отверстиями


		k_{σ} k_{τ}							
$\frac{a}{d}$	для валов из сталей, имеющих $\sigma_{\rm B}$, МПа								
u L	≤ 700	800	900	≤ 700	800	900			
Св. 0,05 до 0,15 » 0,15 » 0,25	2,0 1,80	2,02 1,82	2,12 1,90	1,75	1,83	1,90			

Примечание. Момент сопротивления нетто:

при изгибе
$$W_{\text{Hетто}} = \frac{\pi d^3}{32} \left(1 - 1,54 \frac{a}{d}\right);$$

при кручении
$$W_{\text{к нетто}} = \frac{\pi d^3}{16} \left(1 - \frac{a}{d}\right)$$
.

8.5. Значення k_{σ} и k_{τ} для валов с одной шпоночной канавкой

Коэффи-		σ _в , 1	МПа		
циенты	600	700	800	900	Примечание. $W_{\text{Herro}} = \frac{\pi d^3}{32}$
$k_{\sigma} \ k_{\tau}$	1,6 1,5	1,75 1,6	1,80 1,7	1,90 1,9	$-\frac{bt_1(d-t_1)^2}{2d};$
					$W_{\text{K HETTO}} = \frac{\pi d^3}{16} - \frac{bt_1(d-t_1)^2}{2d}$.

8.6. Значения k_{σ} н k_{τ} для шлицевых участков вала

Шлиць			$\sigma_{_{\rm B}}$,	МПа	
тулиць		600	700	800	900
Прямобочные	k_{σ}	1,55	1,60	1,65	1,70
	k_{τ}	2,35	2,45	2,55	2,65
Эвольвентные	k_{σ}	1,55	1,60	1,65	1,70
	k_{τ}	1,46	1,49	1,52	1,55

8.7. Значения $\frac{k_{\sigma}}{\epsilon_{\sigma}}$ для валов с напрессованными деталями при давлении напрессовки свыше 20 МПа

<i>d</i> , мм		σ _B ,	МПа		Примечание
<i>а</i> , мм	600	700	800	900	примечание
14 22 30 40 50	2,0 2,35 2,6 2,7 3,3	2,8		3,0 3,4 3,8 4,0 4,5	1. Для касательных напряжений $\frac{k_{\tau}}{\varepsilon_{\tau}} = 0.6 \frac{k_{\sigma}}{\varepsilon_{\sigma}} + 0.4.$ 2. При давлении напрессовки $10-20~{ m M}\Pi a$ снижать $k_{\tau}/\varepsilon_{\sigma}$ на $5-15\%$.

8.8. Значения ε_{σ} и ε_{τ}

Сталь		Диаметр вала d , мм								
Сталь		20	30	40	50	70	100	200		
Углеродистая	εσ	0,92	0,88	0,85	0,82	0,76	0,70	0,61		
	ετ	0,83	0,77	0,73	0,70	0,65	0,59	0,52		
Легированная	ε _σ , ε _τ	0,83	0,77	0,73	0,70	0,65	0,59	0,52		

относятся к напряжениям кручения. Значения ε_{τ} даны в табл. 8.8; k_{τ} — в табл. 8.2; для упомянутых выше сталей принимают $\psi_{\tau}=0.1$; значения τ_{v} и τ_{m} определяют в предположении, что вследствие колебания крутящего момента T напряжения кручения изменяются по отнулевому циклу, т. е.

$$\tau_v = \tau_m = 0.5 \tau_{\text{max}} = \frac{0.5T}{W_{\text{r}}}, \tag{8.20}$$

где W_{κ} — момент сопротивления кручению.

При частом реверсе полагают $\tau_v = \frac{T}{W_v}$; $\tau_m = 0$.

Если в рассматриваемом сечении имеется несколько концентраторов напряжений, то учитывают один из них — тот для которого отношение $\frac{k_{\sigma}}{\varepsilon_{\sigma}}$ больше.

§ 8.3. КОНСТРУИРОВАНИЕ ВАЛОВ

Для редукторов общего назначения рекомендуется выполнять простые по конструкции гладкие валы одинакового номинального диаметра по всей длине; для обеспечения требуемых посадок деталей соответствующие участки вала должны иметь предусмотренные отклонения. Но если места посадок отдалены от конца вала, то установка деталей затрудняется. Поэтому для удобства сборки и разборки узла вала, замены подшипников и других насаживаемых деталей валы выполняют ступенчатыми. Пример такой конструкции представлен на рис. 8.4. На участках вала, предназначенных для неподвижных посадок деталей, указывают отклонения размеров вала типа зб, и7, гб и п6 со скосами для облегчения монтажа. Размеры скосов и фасок, мм (места I и II), в зависимости от диаметра прилегающего участка вала, таковы:

d i	вала				15 - 30	30 - 45	45 - 70	70 - 100	100 - 150
c .				٠.	1,5	2,5	2,5	3	4
a .					2	3	5	5	8
α°.					30	30	30	30	10

Для плотного прилегания торцов деталей к буртикам вала

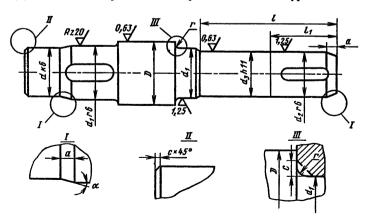
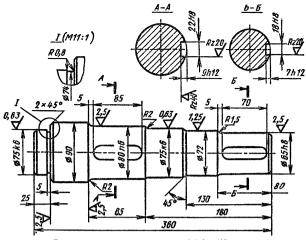



Рис. 8.4. Конструкция вала редуктора

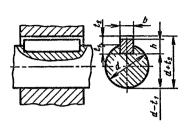
- 1 Термообработка, нормолизация НВ 140... 187.
- 2. Неуказанные предельные отклонения размеров: отверстий по H14. валов по h14.
- 3. Кромки притупить R=0,3 мм.

Рис. 8.5. Рабочий чертеж вала

в месте III перехода делают галтели радиусом r в зависимости от диаметра d_1 (размеры, мм):

d_1 .					15 - 30	30 - 45	45 - 70	70 - 100	100 - 150
r .					1,0	1,0	1,5	2,0	2,5
c .					1,5	2,0	2,5	3,0	4,0

В местах перехода от d к D, если детали здесь не устанавливают, предусматривают галтели с радиусом закругления $R \approx 0.4 \, (D-d)$.


Правый конец вала длиной l одинакового номинального диаметра $d_2=d_3$ имеет на участке длиной l_1 отклонение k6 для посадки муфты или шкива. Участок левее, не сопрягаемый с деталями, показан с отклонением h11. Это позволяет уменьшить число ступеней вала.

Пример выполнения рабочего чертежа ступенчатого вала дан на рис. 8.5.

§ 8.4. ШПОНОЧНЫЕ И ШЛИЦЕВЫЕ СОЕДИНЕНИЯ

Для соединения вала с деталями, передающими вращение, часто применяют призматические шпонки (табл. 8.9) из стали, имеющей $\sigma_{\text{в}} \ge 600$ МПа, например, из сталей 45, Ст6.

8.9. Шпонки призматические (по ГОСТ 23360-78, с сокращениями) Размеры, мм

Диаметр	Сечение шпонки	Глуби	на паза	Фаска
вала <i>d</i>	$b \times h$	вала <i>t</i> 1	втулки t ₂	s × 45°
Св. 10 до 12	4×4	2,5	1,8	0,08-0,16
» 12 » 17	5×5	3,0	2,3	0,16-0,25
» 17 » 22	6×6	3,5	2,8	
» 22 » 30	8×7	4,0	3,3	
» 30 » 38	10×8	5,0	3,3	0,25 - 0,40
» 38 » 44	12×8	5,0	3,3	
» 44 » 50	14×9	5,5	3,8	
» 50 » 58	16×10	6,0	4,3	
» 58 » 65	18×11	7,0	4,4	
» 65 » 75	20 × 12	7,5	4,9	0,40 – 0,60
» 75 » 85	22 × 14	9,0	5,4	
» 85 » 95	25 × 14	9,0	5,4	
» 95 » 110	28 × 16	10,0	6,4	

Примечания: 1. Длину шпонки выбирают из ряда: 6; 8; 10; 12; 14; 16; 18; 20; 25; 28; 32; 36; 40; 45; 50; 56; 63; 70; 80; 90; 100; 110; 125; 140; 160; 180; 200 ... (до 500).

3. Примеры условного обозначения шпонок: исполнение 1, сечение $b \times h = 20 \times 12$, длина 90 мм:

Шпонка 20 × 12 × 90 ГОСТ 23360-78

То же, исполнение 2

Шпонка 2 - 20 × 12 × 90 ГОСТ 23360-78

^{2.} Материал шпонок — сталь чистотянутая с временным сопротивлением разрыву не менее 590 МПа.

Длину шпонки назначают из стандартного ряда так, чтобы она была несколько меньше длины ступицы (примерно на 5—10 мм). Напряжение смятия узких граней шпонки не должно превышать допускаемого, т. е. должно удовлетворяться условие

$$\sigma_{\rm cm} = \frac{F}{A_{\rm cm}} \leqslant [\sigma]_{\rm cm}, \tag{8.21}$$

где $F = \frac{2T}{d}$; T – передавасмый вращающий момент, $H \cdot \text{мм}$;

d — диаметр вала в месте установки шпенки; площадь смятия $A_{\rm cm} = (h-t_1) \, l_{\rm p}; \ l_{\rm p}$ — рабочая длина шпонки: для шпонки с плоскими торцами $l_{\rm p} = l$, при скругленных торцах $l_{\rm p} = l-b$; при стальной ступице и спокойной нагрузке допускаемое напряжение смятия $[\sigma]_{\rm cm} \leqslant 100$ МПа; при колебаниях нагрузки следует снижать $[\sigma]_{\rm cm}$ на 20-25%; при ударной нагрузке снижать на 40-50%; для насаживаемых на вал чугунных деталей приведенные значения $[\sigma]_{\rm cm}$ снижать вдвое.

С учетом приведенных выше значений F и $A_{\rm cm}$ формулу (8.21) приводят к виду

$$\sigma_{\text{cM}} = \frac{2T}{dl_{\text{p}}(h - t_1)} \leqslant [\sigma]_{\text{cM}}. \tag{8.22}$$

Если при проверке шпонки σ_{cm} окажется значительно ниже $[\sigma]_{cm}$, то можно взять шпонку меньшего сечения — как для вала предыдущего диапазона диаметров, но обязательно проверить ее на смятие.

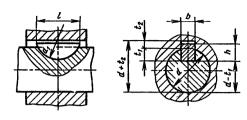
Если же $\sigma_{\text{см}}$ окажется больше $[\sigma]_{\text{см}}$, то допускается установка двух шпонок под углом 180° (предполагается, что каждая шпонка воспринимает половину нагрузки), однако рациональнее перейти на шлицевое соединение.

Для относительно тонких валов (диаметром примерно до 44 мм) допускается установка сегментных шпонок (табл. 8.10).

Соединение проверяют на смятие

$$\sigma_{\text{\tiny CM}} = \frac{2T}{dl(h - t_1)} \leqslant [\sigma]_{\text{\tiny CMD}}$$
 (8.23)

а шпонку - на срез


$$\tau_{\rm cp} = \frac{2T}{dlb} \leqslant [\tau]_{\rm cp}. \tag{8.24}$$

Значения $[\sigma]_{cM}$ такие же, как и для призматических шпонок; $[\tau]_{cp}\approx 0,6\,[\sigma]_{cM}.$

Шлицевые соединения надежнее шпоночных, в особенности при переменных нагрузках; в них достигается более точная

8.10. Шпонки сегментные (по ГОСТ 24071-80, с сокращениями)

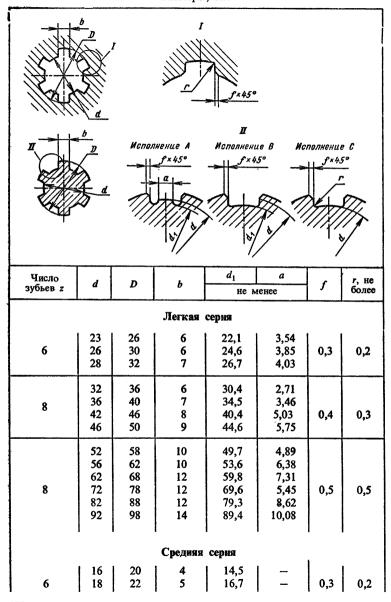
Размеры, мм

Диа	метр	Размеры	Глубин	іа паза		
вал	a D	шпонки			Фаска s × 45°	
Св.	До	$b \times h \times d$	вала t ₁	втулки t ₂		
10	12	3×6, 5×16	5,3	1,4	0,08-0,16	
12	14	4×6, 5×16	5,0	1,8		
14	16	4×7 , 5×19	6,0	1,8		
16	18	5×6 , 5×16	4,5	2,3	l	
18	20	5×7×19	5,5	2,3	0,16-0,25	
20	22	5×9×22	7,0	2,3	1	
22	25	$6 \times 9 \times 22$	6,5	2,8		
25	28	$6 \times 10 \times 25$	7,5	2,8		
28	32	8×11×28	8,0	3,3	0,25-0,40	
32	38	10×13×32	10,0	3,3		

Примечания: 1. Материал шпонок — сталь чистотянутая, $\sigma_{B} \ge 590$ МПа.

2. В зависимости от принятой базы обработки на рабочем чертеже указывают размер t_1 для вала (предпочтительный вариант) или $D-t_1$; для втулки — размер $D+t_2$.

центровка деталей на валу, а распределение нагрузки по шлицам облегчает перемещение подвижных деталей вдоль по валу.


В табл. 8.11 приведены размеры прямобочных шлицевых соединений, в табл. 8.12 — размеры эвольвентных шлицевых соединений.

Выбранное соединение проверяют на смятие

$$\sigma_{\rm cm} \approx \frac{T}{0.75 z A_{\rm cm} R_{\rm cp}} \leq [\sigma]_{\rm cm}.$$
 (8.25)

Здесь T— передаваемый вращающий момент; множитель 0,75 введен для учета неравномерности распределения давления

8.11. Соединення шлицевые прямобочные (по ГОСТ 1139-80, с сокращениями)
Размеры, мм

		F					
Число	a	$_{D}$	ь	d_1	а	f	r, He
зубьев <i>z</i>				не м	енее	,	более
	21	25	5	19,5	1,95	0,3	
6	23	28	6	21,3	1,34	0,5	0,2
	26	32	6	23,4	1.65		
6	28	34	7	25,4 25,9	1,65 1,70	0,4	0,3
	20				1,70		·
	32	38	6	29,4			
8	36	42	7	33,5	1,02	0,4	0,3
	42	48	8	39,5	2,57		
	46	54	9	42,7	_		
_	52	60	10	48,7	2,44		
8	56	65	10	52,2	2,50	0,5	0,5
	62	72	12	57,8	2,40		
ĺ	72	82	12	67,4	_		
10	82	92	12	77,1	3,0	0,5	0,5
ļ	92	102	14	87,3	4,5	'	
	1 1	1	І Тяжелая	l cenua	ı	•	1
				ССРИМ			
z	d	.D	ь	<i>a</i> ₁	f	r	
	16	20	2,5	14,1			
10	18	23	3,0	15,6	0,3	0	,2
1	21	26	3,0	18,5			-
	23	29	4,0	20,3			
	26	32	4,0	23,0			
	28	35	4,0	25,4	İ		
10	32	40	5,0	28,0	0,4	0	,3
	36	45	5,0	31,3		-	,-
	42	52	6,0	36,9			
10	46	56	7,0	40,9			
	52	60	5,0	47,0	1		
16	56	65	5,0	50,6	0,5	1 0	,5
1	62	72	6,0	56,1	3,5	1	,-
	72	82	7,0	65,9			
20	82	92	6,0	75,6	1		
20	92	102	7,0	85,5			
20	1 /2	102	/,0	05,5		1	

Примечание. Исполнение А дано для изготовления валов соединений легкой и средней серий методом обкатывания. Валы соединений тяжелой серии методом обкатывания не изготовляют.

8.12. Соединения шлицевые эвольвентные (по ГОСТ 6033-80, с сокращениями) Размеры, мм

	Центри рова ва	3			а,	no B		*
		Модуль	m			M	Іодуль	m
D	0,8	1,25	2	3	D	2	3	5
	1	Число зубь	ев z			Чис	ло зубь	ев г
10 12 15 17 20 25 30 35 40	11 13 17 20 23 30 36	12 14 18 20 26 30 34	16 18 21		60 65 70 75 80 85 90 95	28 31 34 36 38	18 20 22 24 25 27 28 30 32	15 16 17 18

Примечания: 1. В таблице приведены номинальные диаметры D из первого (предпочтительного) ряда—в интервале от 10 до 100 мм; соответственно модули также из первого ряда в интервале от 0,8 до 5 мм. В ГОСТ 6033—80 интервал диаметров от 4 до 500 мм, интервал модулей от 0,5 до 10 мм.

26

38

- 2. Числа зубьев z приведены в таблице только те, которые отмечены в стандарте как предпочтительные.
- 3. Диаметр делительной окружности d=mz; диаметр окружности впадин втулки: при плоской форме дна $D_f=D$; при закругленной $D_f=D+0,44m$; диаметр окружности вершин зубьев втулки $D_a=D-2m$; диаметр окружности впадин вала: при плоской форме дна $d_f=D-2,2m$; при закругленной $d_f=D-2,76m$; диаметр окружности вершин зубьев вала: при при прировании по боковым поверхностям зубьев $d_a=D-0,2m$; при центрировании по наружному диаметру $d_a=D$; R=0,47m; $\alpha_B=30^\circ$.

50

55

по шлицам; z — числу шлицев, $A_{\rm cm}$ — расчетная поверхность смятия,

$$A_{\rm cm} = \left(\frac{D-d}{2} - 2f\right)l,$$

где l – длина ступицы; $R_{cp} = 0.25 (D + d)$.

Допускаемое напряжение [σ]_{см} для поверхностей шлицев, не подвергнутых специальной термической обработке, принимают:

при спокойной нагрузке и неподвижном соединении $[\sigma]_{cm} = 100 \text{ M}\Pi a$;

при подвижном соединении не под нагрузкой $[\sigma]_{cm} = 40 \text{ M}\Pi a;$ при переменной нагрузке $[\sigma]_{cm}$ снижают на 30-50% в зависимости от интенсивности ударов.

Если поверхности шлицев термически обработаны, то значения $[\sigma]_{\text{см}}$ увеличивают на 40-50%.

Проверку эвольвентных шлицевых соединений на смятие выполняют по формуле (8.25), в которой $A_{\rm cm} \approx 0.8 \, ml$, где m- модуль зубьев; $R_{\rm cp} \approx 0.25 \, (D_{\rm R} + d_{\rm A})$.

глава **IX** Опоры валов

§ 9.1. ОПОРЫ КАЧЕНИЯ

Общие сведения

Проектирование опорных узлов ведут в следующем порядке.

- 1. Намечают эскизную компоновку узла; на основании расчетной схемы ориентировочно определяют расстояние между опорами с учетом закрепленных на валу деталей.
- 2. На основании кинематической схемы узла и силовой характеристики механизма определяют величины и направления действующих на опоры нагрузок.
- 3. Намечают тип и класс точности подшипника; учитывая все указанные выше факторы, определяют расчетный ресурс выбранного подшипника и сравнивают его с теоретическим.
- 4. Учитывая величину, направление и характер нагрузок, назначают посадки на сопряжения колец подпипников с валом и корпусом, а также выбирают способ крепления колец на посадочных поверхностях.
- 5. Выбирают конструкцию уплотнений и способ смазывания узла.
- 6. Окончательно оформляют конструкцию узла, обеспечивая прочность и жесткость деталей, соосность посадочных мест, легкость хода, надежность и безопасность эксплуатации, монтаж, демонтаж и ремонт, компенсацию теплового расширения.

Краткие характеристики основных типов подшилников качения

Радиальные однорядные шарикоподшипники (рис. 9.1, табл. ПЗ) воспринимают радиальные и ограниченные осевые нагрузки, действующие в обоих направлениях вдоль оси вала. Подшипники допускают перекосы валов до 10'; по сравнению с подшипниками других типов имеют минимальные потери на трение; фиксируют положение вала относительно корпуса в двух осевых направлениях.

Радиальные однорядные шарикоподшипники с двумя защитными шайбами (рис. 9.2, табл. ПЗ) заполняются на заводе-

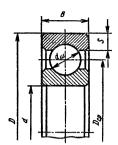


Рис. 9.1. Подшинник шариковый ЙМИДКООНЕО ЙМИЛЛЕКЕВО

Рис. 9.2. Подшинник шариковый радиальный однорядный с двумя защитными шайбами

изготовителе пластичным смазочным материалом и в дополнительном смазывании не нуждаются.

сферические шарикоподшипники Радиальные двухрядные (рис. 9.3, табл. П4) воспринимают радиальные и небольшие осевые нагрузки; фиксируют положение вала относительно корпуса в двух осевых направлениях. Благодаря способности самоустанавливаться они допускают несоосность посадочных мест (перекосы) до $2-3^\circ$.

Роликоподишиники с короткими иилиндрическими роликами (рис. 9.4. табл. П5) предназначены для восприятия значительных радиальных нагрузок; подшипники, фиксирующие вал в осевом направлении, могут воспринимать кратковременные небольшие осевые нагрузки. Требуется очень точная соосность посалочных мест.

Конструктивные разновидности этих подшипников зависят от наличия и расположения бортов на наружных и внутренних кольцах. Подшипники без бортов на наружном или внутренних кольцах дают возможность валу перемещаться относительно корпуса в осевом направлении (также подшипники широко используются как плавающие опоры).

Радиально-упорные шарикоподшинники (рис. 9.5, табл. Пб) воспринимают комбинированные радиально-осевые нагрузки; осевая грузоподъемность их зависит от угла контакта, имеющего значения $\alpha = 12^{\circ}$; $\alpha = 26^{\circ}$; $\alpha = 36^{\circ}$; с увеличением угла

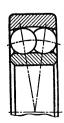


Рис. 9.3. Подшинник шариковый радиальный сферический двухрядный

Рис. 9.4. Подшипник роликовый радиальный с короткими цилин-

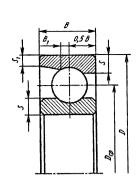


Рис. 9.5. Подшипник шариковый радиально-упорный однорядный

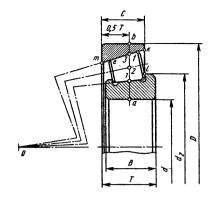


Рис. 9.6. Подшинник роликовый конический одновядный

допускаемая осевая нагрузка возрастает за счет радиальной. Подшипники способны воспринимать осевую нагрузку только в одном направлении, поэтому для фиксации вала в обе стороны их устанавливают попарно.

Конические роликоподшипники (рис. 9.6, табл. П7) могут воспринимать радиальные и осевые нагрузки. Способность воспринимать осевую нагрузку зависит от угла конусности α ($\alpha=12^\circ$; $\alpha=18^\circ$; $\alpha=26^\circ$; $\alpha=36^\circ$); осевая грузоподъемность возрастает при увеличении α за счет радиальной. При чисто радиальной нагрузке в подшипнике возникает осевая составляющая, которую компенсируют осевой нагрузкой противоположного направления; поэтому для фиксации вала в обе стороны подшипники устанавливают попарно. Подшипники допускают регулирование осевой игры и радиального зазора; перекос вала относительно оси конуса недопустим.

Упорные шарикоподшинники (рис. 9.7 и 9.8, табл. П8) воспринимают только осевые нагрузки: одинарные — в одном направлении, двойные — в двух направлениях. Подшипники очень чувствительны к несоосности и перекосам осей; их не

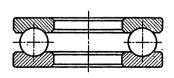
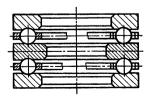



Рис. 9.7. Подшинник шариковый упорный

ис. 9.8. Подшинник шариковый упорный (двухрядный)

следует устанавливать в опорах горизонтальных валов, имеющих высокие частоты вращения, так как под действием центробежных сил шарики могут выйти из беговых дорожек, при этом возрастает сила трения, увеличивается нагрев.

Условные обозначения подшипников качения содержат информацию о внутреннем диаметре подшипника, его серии, типе, конструктивных особенностях и классе точности.

Первые две цифры номера подшипника справа указывают диаметр отверстия внутреннего кольца подшипника; для диаметров $d=20\div495\,$ мм (за исключением магнетных) диаметр отверстия определяют умножением этих цифр на 5. Это правило не распространяется на подшипники с $d<20\,$ мм; для них две последние цифры справа соответствуют: $00-d=10\,$ мм; $01-d=12\,$ мм; $02-d=15\,$ мм; $03-d=17\,$ мм. Третья и седьмая цифры указывают серию подшипников (кроме малых диаметров, до 9 мм) и характеристику его по ширине (например, 1- особолегкая, 2- легкая, 3- средняя, 4- тяжелая); тип подшипника указывается в условном обозначении четвертой цифрой справа (например, 0- радиальный шариковый, 1- радиальный шариковый сферический, 2- радиальный с короткими роликами).

Конструктивные особенности подшипника указывают в условном обозначении пятой цифрой или двумя цифрами (пятой и шестой) (подшипник с канавкой на наружном кольце, с защитными шайбами, с упорным бортом на наружном кольце и т. п.).

Класс точности подшипника (ГОСТ 520—71) указывается одной цифрой перед условным обозначением подшипника (нормальный класс обозначается цифрой 0, повышенный — 6, высокий — 5, прецизионный — 4, сверхпрецизионный — 2). Некоторые подшипники изготовляют по специальным техническим требованиям; чтобы их можно было отличить от стандартных, к условному обозначению подшипника добавляют справа дополнительные знаки в виде цифр и букв русского алфавита.

Значения некоторых дополнительных знаков:

все или часть деталей из коррозионно-стойкой стали – \mathbf{W} ; детали подшипников из теплостойких сталей – \mathbf{P} :

сепаратор из черных металлов – Γ :

сепаратор из пластических материалов - Е;

специальные требования к подшипнику по шуму - Ш;

подшипники закрытого типа при заполнении смазочным материалом ЦИАТИМ-221-С1.

Примеры условных обозначений:

6-206 — подшипник шариковый радиальный однорядный, внутренний диаметр d=30 мм (06×5); легкой серии; класс точности — 6:

-2311 — подшиник роликовый радиальный с короткими цилиндрическими роликами; внутренний диаметр d=55 мм (11×5) ; средней узкой серии; класс точности -0.

§ 9.2. СХЕМЫ УСТАНОВКИ ПОДШИПНИКОВ КАЧЕНИЯ

Для предотвращения заклинивания тел качения, вызываемого температурным удлинением вала или неточностью изготовления деталей подшипникового узла, применяют две основные схемы установки подшипников:

- 1) с фиксированной и плавающей опорой (рис. 9.9-9.13);
- 2) с фиксацией враспор.

По схеме 1 в одной опоре устанавливают подшипник, фиксирующий положение вала относительно корпуса в обоих направлениях; он жестко крепится в осевом направлении как на валу, так и в расточке корпуса (см. рис. 9.9). Опора A — фиксирующая; она воспринимает радиальную и двустороннюю осевые нагрузки. Внутреннее кольцо второго подшипника E жестко (с помощью разрезного кольца) крепится на валу в осевом направлении; внешнее кольцо может свободно перемещаться вдоль оси стакана (опора E — плавающая). Для свободного перемещения внешнего кольца подшипника в стакане необходимо назначить соответствующую посадку с зазором, а также обеспечить соответствующий зазор (e).

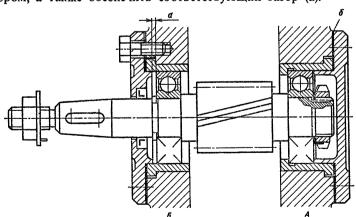


Рис. 9.9. Вал установлен на радиальных подшинниках; правый — фяксированный, левый — «плавающий»

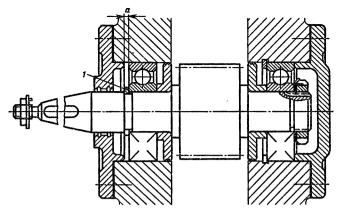


Рис. 9.10. Вал установлен на радиальных подшипниках: правый — фиксированный, левый — «плавающий»

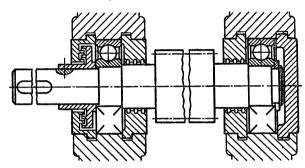


Рис. 9.11. Вал установлен на радиальных подшинниках: крышки — врезные, правый подшинник — «плавающий»

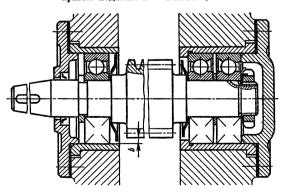


Рис. 9.12. Вал установлен на двух радиально-упорных шарикоподишиниках; левый подшинник — «плавающий»

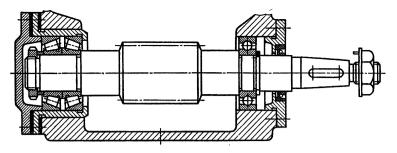


Рис. 9.13. Червячный вал установлен на двух конических роликоподшипниках; правый подшипник — «плавающий» (радиальный однорядный)

В качестве плавающей опоры (Б) выбирают ту, которая воспринимает меньшую радиальную нагрузку (рис. 9.10, 9.11). При значительных расстояниях между опорами для увеличения жесткости фиксирующей опоры часто устанавливают два однорядных радиально-упорных шарикоподшипника (рис. 9.12) или два конических роликоподшипника (рис. 9.13). Такая установка характерна для червячных редукторов (для вала червяка).

В узлах, спроектированных по схеме 2, наружные кольца подшипников упираются в торцы крышек, а торцы внутренних колец — в буртики вала (рис. 9.14, 9.15, 9.16).

Во избежание защемления тел качения от температурных деформаций предусматривают зазор (а), превышающий тепловое удлинение

$$a > \Delta l = \alpha (t_1 - t_0) l$$

где $\alpha = 12 \cdot 10^{-6}$ — коэффициент линейного расширения стали $1/^{\circ}$ C; t_0 — начальная температура вала и корпуса, $^{\circ}$ C; t_1 — расстояние между опорами, мм.

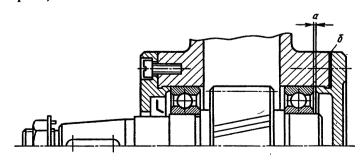


Рис. 9.14. Вал-шестерпя установлен на радиальных подшинниках (враспор)

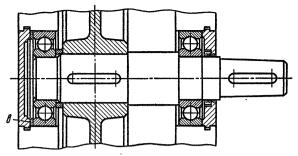


Рис. 9.15. Вал установлен на радиальных подшинниках; крышки врезные

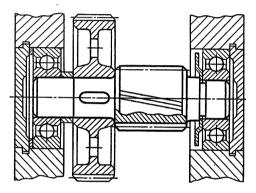


Рис. 9.16. Промежуточный вал редуктора установлен на радиальных шарикоподшинниках; крышки врезные

Для радиальных шарикоподшипников при обычном перепаде температур вала и окружающей среды принимают $a \approx 0.2 \div$ ÷ 0.5 мм. Регулируют зазор с помощью мерных прокладок (б) между торцовыми поверхностями корпуса И крышками (рис. 9.14). Схема 2 имеет ряд преимуществ: корпус может быть выполнен со сквозной расточкой с одной установки, без заплечиков, стаканов и уступов, что обеспечивает больпосадочных мест; число точность деталей сокращается; удобен монтаж и регулировка узла. Следует отметить и недостатки данной схемы: необходимость назначения более жестких допусков на линейные размеры, возможность защемления тел качения при больших температурных деформациях.

В узлах на рис. 9.15, 9.16 подшипники крепят закладными крышками; необходимый зазор a регулируют компенсаторным кольцом δ .

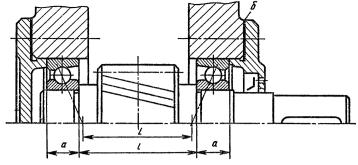


Рис. 9.17. Вал-шестерня установлен на радиально-упорных шарикоподшипниках (враспор)

Схему 2—с осевой фиксацией подшипников враспор—следует применять для сравнительно коротких валов, используя радиально-упорные шариковые или роликовые подшипники (регулируемые). Такие подшипники (без предварительного натяга) допускают регулирование осевых зазоров в необходимых пределах при их монтаже и в процессе эксплуатации. Тепловые удлинения вала не должны полностью выбирать осевые зазоры. Конструкция таких опор представлена на рис. 9.17, 9.18, 9.19. В узлах рис. 9.17, 9.18 осевой зазор регулируется комплектом металлических прокладок є толщиной 0,05—0,5 мм, установленных между корпусом (стаканом) и крышкой.

Регулировки осевого зазора в узле рис. 9.19 осуществляются винтом 1, шайбой стопорной 2 и шайбой-упором 3.

Подшипниковые узлы с радиально-упорными подпипниками, поставленными враспор, рекомендуется применять при

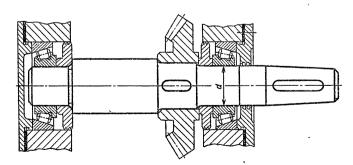


Рис. 9.18. Вал конического редуктора установлен на конических роликоподшиппиках, поставленных враспор

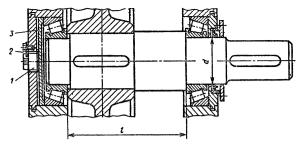


Рис. 9.19. Вал установлен на конических роликоподшинниках; крышки врезные

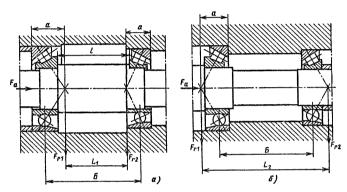


Рис. 9.20. Установка двух радиально-упорных подшинников, поставленных: a — враспор; δ — врастяжку

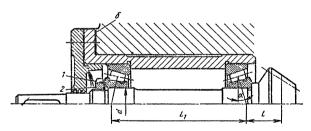
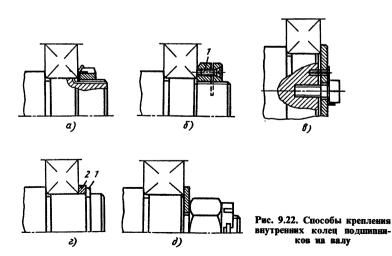


Рис. 9.21. Вал-шестерня на конических роликонодшинниках, поставленных врастяжку

отношении $l/d = 6 \div 8$ (рис. 9.18, 9.19). Жесткость опор с радиально-упорными подшипниками в большой степени зависит от схемы установки их в узле.


На рис. 9.20 показаны две схемы установки радиальноупорных подшипников, поставленных враспор и врастяжку. При одинаковом размере E величина опорной базы L_2 значительно больше L_1 . На рис. 9.21 представлен узел входного валашестерни конического редуктора: подшипники поставлены врастяжку. За счет увеличения базового размера L обеспечивается большая жесткость узла. Ориентировочно можно принимать $L/l=2\div 3$.

§ 9.3. КРЕПЛЕНИЕ ПОДШИПНИКОВ НА ВАЛУ И В КОРПУСЕ

Выбор рационального способа крепления подшипников на валу и в корпусе зависит от типа подшипника, величины и направления действующих нагрузок, частоты вращения, условий монтажа и демонтажа и т. п. В тех случаях, когда на подшипник не действует осевая нагрузка и необходимо предотвратить только случайное смещение подшипника, осевое крепление на валу осуществляется только соответствующей посадкой без применения дополнительных устройств. Некоторые наиболее распространенные способы осевых креплений внутренних и наружных колец подшипников на валу и в корпусе даны на рис. 9.22—9.25.

На рис. 9.22, а кольцо поджимается к буртику вала специальной гайкой со стопорной шайбой, внутренний выступ которой входит в паз вала, а наружный отгибается в один из пазов гайки. Размеры гаек и шайб даны в табл. 9.1 и 9.2.

На рис. 9.22, б внутреннее кольцо прижимается к буртику

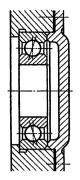


Рис. 9.23. Способы крепления наружного кольца в корпусе (уступ корпуса — крышка)

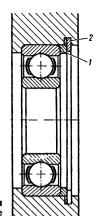


Рис. 9.24. Крепление наружного кольца подшипника в корпусе (пружинным кольцом)

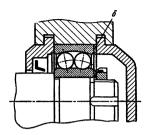


Рис. 9.25. Крепление подшипника между двумя врезными компиками

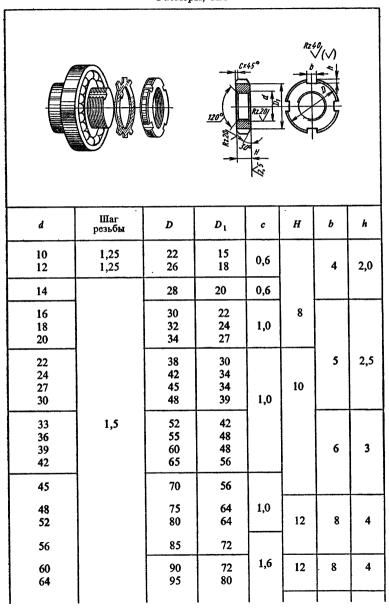
вала резьбовым кольцом с прорезью. Стопорение осуществляется с помощью винта 1.

На рис. 9.22, в кольцо поджимается к буртику вала плоской торцовой шайбой и винтом, а также стопорной шайбой.

Рис. 9.22, г — крепление упорным стопорным пружинным кольцом 1 прямоугольного сечения. Для удобства монтажа и демонтажа установлено также компенсаторное кольцо 2. Размеры стандартных колец и канавок даны в табл. 9.3, 9.4.

На рис. 9.22, д кольцо закрепляется корончатой гайкой с шайбой и шплинтом; применяют при действии больших осевых ударных нагрузок.

Рис. 9.23 — наружное кольцо подшипника зажимается между выступом крышки и упорным буртиком корпуса.

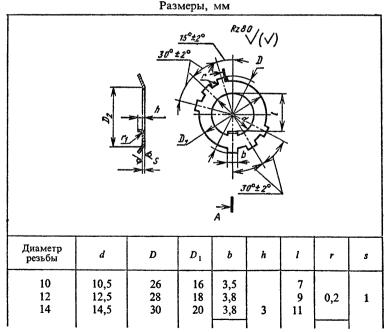

Рис. 9.24 — наружное кольцо закреплено между буртиком корпуса упорным кольцом 1 и пружинным стопорным кольцом 2, вставленным в канавку корпуса.

Размеры стопорных колец и канавок даны в табл. 9.5, 9.6. Рис. 9.25 — наружное кольцо закрепляется в разъемном корпусе двумя закладными (врезными) крышками и кольцом-компенсатором δ .

На рис. 9.26 – 9.28 представлены некоторые способы крепления и регулировки радиально-упорных подшипников.

В узле на рис. 9.26 зазоры в подшипнике регулируют винтом 1 (с мелкой резьбой), шайбой 2 и стопорной планкой 3; в узле на рис. 9.27 — гайкой 1 и стопорной шайбой 2,

9.1. Круглые гайки шлицевые (по ГОСТ 11871-80) Размеры, мм



d	Шаг резьбы	D	D_1	с	Н	b	h -
68 72 76 80 85	2	100 105 110 115 120	80 90 90 100 105	1,6	15	10	5
90 96 100		125 130 135	110 110 120		18	12	6

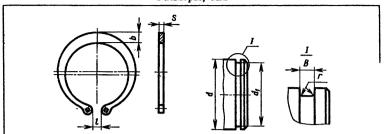
Пример обозначения гайки нормальной точности с диаметром d=64 мм, с шагом резьбы 2 мм с полем допуска 6H, из стали 35X с покрытием 01 толшиной 9 мкм:

Гайка M64 × 2, 6 H.35 X.019 ГОСТ 11871-80

9.2. Стопорные многолапчатые шайбы (по ГОСТ 11872-80)

16 16,5 32 22 3 13 0,5 1 18 18,5 34 24 4 17 20 20,5 37 27 4 17 22 22,5 40 30 4,8 19 24 24,5 44 33 21 21 27 27,5 47 36 24 30 30 30,5 50 39 27 30 36 36,5 58 45 30 33 38 39,5 62 48 5,8 5 36 42 42,5 67 52 42 42 48 48,5 77 60 45 42 48 48,5 77 60 45 45 52 52,5 82 65 57 65 49 60 61 92 75 6 65 67 64 65 97 80 65 65 65 70 78 6 65 0,8 65 72 73 107 90 73 77 76 80 <th>Диаметр резьбы</th> <th>đ</th> <th>D</th> <th>D₁</th> <th>b</th> <th>h</th> <th>1</th> <th>r</th> <th>s</th>	Диаметр резьбы	đ	D	D ₁	b	h	1	r	s
20 20,5 37 27 4,8 4 17 19 19 21 24 24,5 44 33 27 24 24,5 44 33 21 21 21 24 22 23 27 30 30,5 50 39 27 30 30 33 33,5 54 42 30 30 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 34 42 45 45 52				1		3		0,5	1
22 22,5 40 30 4,8 19 21 24 24,5 44 33 24 21 24 25 27 27 27 27 27 30 30,5 50 39 27 30 30 33 34 42					i				
24 24,5 44 33 21 24 25 27 27 27 27 27 27 27 30 30,5 50 39 27 30 30 33 33,5 54 42 30 30 33 34 42						4			
27 27,5 47 36 24 0,5 30 30,5 50 39 30 30 33 33,5 54 42 30 30 38 39,5 62 48 5,8 5 36 42 42,5 67 52 42 45 45,5 72 56 42 48 48,5 77 60 45 52 52,5 82 65 49 56 57 87 70 7,8 53 60 61 92 75 65 57 64 65 97 80 65 65 72 73 107 90 69 76 77 112 95 9,5 73 80 81 117 100 70 76 85 86 122 105 81 90 91 127 110 86					4,8				
30 30,5 50 39 27 0,5 33 33,5 54 42 30 33 36 36,5 58 45 33 33 38 39,5 62 48 5,8 5 36 42 42,5 67 52 42 45 45,5 72 56 42 48 48,5 77 60 45 52 52,5 82 65 49 56 57 87 70 7,8 53 60 61 92 75 65 57 64 65 97 80 65 65 72 73 107 90 69 76 77 112 95 9,5 73 80 81 117 100 70 76 85 86 122 105 81 90 91 127 110 86							21		
33 33,5 54 42 36 36,5 58 45 38 39,5 62 48 5,8 5 42 42,5 67 52 42 45 45,5 72 56 42 48 48,5 77 60 45 52 52,5 82 65 49 56 57 87 70 7,8 6 60 61 92 75 6 61 92 64 65 97 80 65 65 0,8 72 73 107 90 69 73 76 77 112 95 9,5 73 80 81 117 100 70 76 85 86 122 105 81 90 91 127 110 86	1					l		0.5	
36 36,5 58 45 33 38 39,5 62 48 5,8 5 36 42 42,5 67 52 39 42 45 45,5 72 56 42 45 48 48,5 77 60 45 45 52 52,5 82 65 49 53 60 61 92 75 6 57 64 65 97 80 61 65 65 72 73 107 90 69 72 76 77 112 95 9,5 7 76 80 81 117 100 7 76 85 86 122 105 81 90 91 127 110 86		30,5	50				27	0,5	
38 39,5 62 48 5,8 5 36 42 42,5 67 52 39 45 45,5 72 56 42 48 48,5 77 60 45 52 52,5 82 65 49 56 57 87 70 7,8 53 60 61 92 75 6 57 64 65 97 80 61 65 65 72 73 107 90 69 69 76 77 112 95 9,5 73 76 80 81 117 100 70 76 81 85 86 122 105 81 86 90 91 127 110 86		33,5		42		l	30		
42 42,5 67 52 39 45 45,5 72 56 45 48 48,5 77 60 45 52 52,5 82 65 49 56 57 87 70 7,8 53 60 61 92 75 6 61 61 68 69 102 85 65 0,8 72 73 107 90 69 76 77 112 95 9,5 73 80 81 117 100 7 76 85 86 122 105 81 90 91 127 110 86			58				33		
45 45,5 72 56 48 48,5 77 60 52 52,5 82 65 56 57 87 70 7,8 53 60 61 92 75 6 57 64 65 97 80 61 65 65 72 73 107 90 69 69 76 77 112 95 9,5 73 76 80 81 117 100 70 76 81 85 86 122 105 81 86 90 91 127 110 86	38	39,5	62		5,8	5	36		
45 45,5 72 56 48 48,5 77 60 52 52,5 82 65 56 57 87 70 7,8 53 60 61 92 75 6 57 64 65 97 80 61 65 65 72 73 107 90 69 69 76 77 112 95 9,5 73 76 80 81 117 100 70 76 81 85 86 122 105 81 86 90 91 127 110 86	42	42,5	67	52			39		
52 52,5 82 65 7,8 49 53 60 61 92 75 60 61 92 75 61 61 61 61 61 62 62 62 63 63 63 63 63 64 65 77 73 107 90 69 69 69 73 73 73 73 73 73 73 73 73 76 76 76 76 76 76 76 81 86 122 105 81 86 81 86 86 122 105 86	45	45,5	72	56			42		
52 52,5 82 65 7,8 49 53 60 61 92 75 60 61 92 75 61 61 61 61 61 62 62 62 63 63 63 63 63 64 65 77 73 107 90 69 69 69 73 73 73 73 73 73 73 73 73 76 76 76 76 76 76 76 81 86 122 105 81 86 81 86 86 122 105 86	48	48,5	77	60			45		
56 57 87 70 7,8 53 53 60 61 92 75 6 57 64 65 97 80 61 61 68 69 102 85 65 0,8 72 73 107 90 69 69 76 77 112 95 9,5 73 73 80 81 117 100 7 76 81 85 86 122 105 81 86 90 91 127 110 86	52	52,5	82	65		1	49		
60 61 92 75 6 57 64 65 97 80 61 61 68 69 102 85 65 0,8 72 73 107 90 69 76 77 112 95 9,5 73 80 81 117 100 7 76 85 86 122 105 81 90 91 127 110 86	56			70	7,8		53		
68 69 102 85 — 65 0,8 72 73 107 90 69 69 76 77 112 95 9,5 73 73 80 81 117 100 7 76 81 85 86 122 105 81 86 90 91 127 110 86	60	61	92	75		6	57		
68 69 102 85 65 0,8 72 73 107 90 69 69 76 77 112 95 9,5 73 73 80 81 117 100 7 76 81 85 86 122 105 81 86 90 91 127 110 86	64	65	97	80]			1,6
72 73 107 90 69 73 73 80 81 117 100 76 85 86 122 105 81 86 90 91 127 110 86	68	69	102	85			65	0,8	
80 81 117 100 7 76 85 86 122 105 81 90 91 127 110 86	72	73	107	90			69	'	
80 81 117 100 7 76 85 86 122 105 81 90 91 127 110 86	76	77	112	95	9,5		73	l	
85 86 122 105 81 81 86 127 110 86	80	81	117	100	ĺ	7		ļ	
	85	86	122			l	81		
	90	91	127	110		1	86		
			132	115	11,5	1	91	1,0	2,0
100 101 137 120 96 96	100	101							Ť

Пример обозначения стопорной многолапчатой шайбы для круглой шлицевой гайки с диаметром резьбы 64 мм, из материала группы 0,1 с покрытием 0,5:

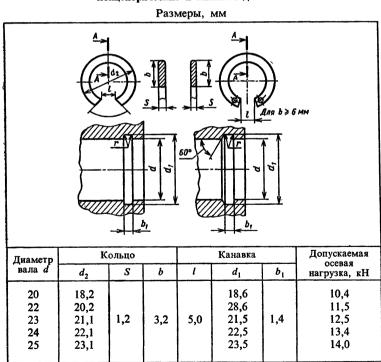

Шайба 64.01.05 ГОСТ 11872-80

перемещающей внутреннее кольцо левого подшипника вдоль вала.

Следует обратить внимание на закрепление внутренних колец конических роликоподпипников (см. рис. 9.28), сепаратор которых выступает под торцом внутреннего кольца и не дает возможность довернуть гайку до торца: необходимо между стопорной шайбой и внутренним кольцом ставить промежуточное кольцо 1; зазоры в этом узле регулируют набором металлических колец 6.

9.3. Кольца пружинные упорные плоские наружные эксцентрические и канавки для них

Размеры, мм



		Канавка				Кольцо	
Диаметр вала <i>d</i>	d_1	Допускаемая осевая сила кН	Ŕ	гнаиб	S	b	ı
20	18,6	10					
22	20,6	11				3,2	
23	21,5	12				5,2	
24	22,5	13	1				
25	23,5	14				3,6	
26	24,5	14	1,4	0,1	1,2		3
28	26,5	16	′	′	,	4,0	
29	27,5	16					
30	28,5	17					l
32	30,2	21	1			-4,4	
34	32,2	22					
35	33,0	26					
36	34,0	27	l			4.0	İ
37	35,0	28	1			4,9	
38	36,0	29					1
40	37,5	38	1,9		1,7		
· 42	39,5	39					
45 46	42,5	42				5,5	_
48	43,5 45,5	43 45]		-,-	6
50	43,3 47,0	57	2,2	0,2			Ī
52	49,0	59	2,2		2,0	6,0	
54	51.0	61		 			
55	51,0 52,0	62	2,2	0,2	20	6,0	
56	53,0	64	1 2,2	0,2	2,0		6
58	55,0	66					1
	,-	1	i	1	i	6,5	I

	200	Канавка		Кольцо			
Диаметр вала <i>d</i>	<i>d</i> ₁	Допускаемая осевая сила, кН	В	гнаиб	S	b	l
60 62	57,0 59,0	68 71	2,2	0,2	2,0	6,5	6
65 68 70 72 75	62,0 65,0 67,0 69,0 72,0	74 78 80 82 86	2,8	0,3	2,5	7,0	

Пример обозначения кольца для вала диаметром d=30 мм: Koльцо~30~FOCT~13942-68

9.4. Кольца пружинные упорные плоские наружные концентрические и канавки для них

Диаметр		ольцо			Канавка		Допускаемая осевая
вала d	· d ₂	S	b	ı	<i>d</i> ₁	<i>b</i> ₁	нагрузка, кН
26	24,0	1,2			24,5	1,4	14,50
28	25,8				26,5		15,7
29	26,8				27,5		16,6
30	27,8		4,0	6,0	28,5		16,9
32	-29,5	1 1			30,2		21,6
34.	31,4				32,2		22,0
35	32,2				33,0		26,2
36	33,0				34,0		26,9
37	34,0				35,0		27,7
38	35,0				36,0		28,4
40	36,5	1,7	5,0		37,5	1	38,2
42	38,5	1 i			39,5	1,9	39,0
45	41,5				42,5		42,0
46	42,5			8,0	43,5		43,0
48	44,5				45,5	l .	45,0
50	45,8				47,0		55,9
52	47,8				49,0		58,3
54	49,8				51,0	ł	60,5
55	50,8				52,0	j	61,7
56	51,8	2,0	6,0		53,0	2,2	62,9
58	53,8				55,0	2,2	65,1
60	55,8				57,0	l	67,5
62	57,8				59,0	l	69,8
65	60,8				62,0		73,3
68	63,6	2,5	7,0	10,0	65,0	1 20	76,7
70	65,5			1	67,0	2,8	79,0

Пример условного обозначения кольца для диаметра отверстия $d=30\,$ мм из стали марки 65Г с кадмиевым покрытием толщиной 15 мкм, хромированным: Кольцо А30 65Г кд 15 хр ГОСТ 13940 $-68\,$

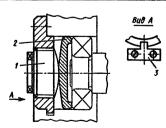


Рис. 9.26. Способ крепления и регулировки радяально-упорного подшипника

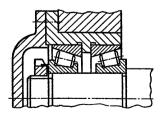


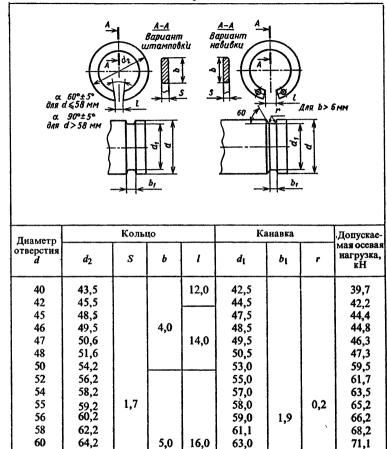
Рис. 9.27. Способ фиксации опоры вала (конические роликоподшинники поставлены врастяжку)

9.5. Кольца пружниные упорные плоские внутренние эксцентрические и канавки для них

Размеры, мм

		3 i			S		, p				
Диаметр отвер- стия в корпусе d	Диа- метр канав- ки d ₁	Допускаемая осевая сила F_0 , к ${ m H}$	b-	В	ı	Диаметр отвер- стия в корпусе d	Диа- метр канав- ки d ₁	Допускаемая осевая сила F_0 , кН	b	В	1
40 42 45	42,5 44,5 47,5	40,42	4,2		12	78 80 82	81,0 83,5 85,5	112,0 118,97	6,1		18
46 47 48 50	48,5 49,5 50,5 53,0	47,23	4,5		14	85 88 90 92	88,5 91,5 93,5 95,5	125,83		2,2	
52 54 -55	55,0 57,0 58,0	62,91		1,9		95 -98 100	98,5 101,5 103,5	139,40	2,3		20
56 58 60 62	59,0 61,0 63,0 65,0		5,1		16	102 105 108 110	106 109 112 114	175,80	8,5	2;8	
65 68 70	68,0 71,0 73,0	74,67				112 115 120	116 119 124	191,34			
72 75	75,0 78,0	86,43	6,1		18	125 130	129 134	206,97	9,7		

Примечания: 1. Толщина кольца S=1,7 для $d=10\div75;$ S=2,0 для $d=75\div100;$ S=2,5 для $d=100\div130.$


Кольцо 50 ГОСТ 13943-68

^{2.} Радиус скруглений канавки r=0,2 для d_1 от 42,5; r=0,3 для $d_1=.103,5\div 134.$

^{3.} Пример обозначения кольца для отверстия d = 50 мм;

9.6. Кольца пружинные упорные плоские виутренние концентрические и канавки для них

Размеры, мм

65.0

68,0

71,0

73,0

75,0

78,0

81,0

83,5

85,5

88,5

2,2

62

65

68

70

72

75

78

80

82

85

66.2

69,2

72,5

74.5

76,5

79.5

82,5

85,5

87,5

90,5

2,0

6,0

18.0

20,0

73,3

76,7

80,2

82,6

84,8

88,3

91.7

109,9

112,7

116,7

Диаметр		Колы	цо		K	анавка		Допускае-
отверстия d	d ₂	S	ь	ı	d_1	<i>b</i> ₁	r	мая осевая нагрузка, кН
88 90 92 95 98 100	93,5 95,5 97,5 100,5 103,5 105,5	2,0	6,0	20,0	91,5 93,5 95,5 98,5 101,5 103,5	2,2	0,2	120,7 123,4 126,4 130,9 134,8 136,8
102 105 108 110 112 115 120	108,0 111,0 114,0 116,0 118,0 121,5 126,5	2,5	7,0	22,0	106,0 109,0 112,0 114,0 116,0 119,0 124,0	2,8	0,3	160,0 164,0 170,2 172,5 175,3 180,0 187,0

Пример условного обозначения кольца для диаметра отверстия $d=47\,$ мм из стали марки 65Г с кадмиевым покрытием толщиной 15 мкм, хромированным:

Кольцо А 47 65Г кд хр ГОСТ 13941-68

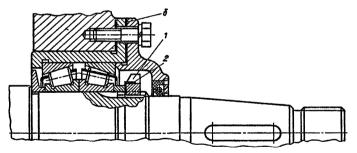


Рис. 9.28. Способ крепления опоры вала (конические подшишники поставлены враспор)

§ 9.4. КОНСТРУИРОВАНИЕ ОПОРНЫХ УЗЛОВ РЕДУКТОРОВ

В цилиндрических прямозубых передачах нет постоянных осевых усилий, однако они могут возникнуть случайно. В связи с этим рекомендуется одну из опор в узле фиксировать. В редукторах с цилиндрическими косозубыми колесами действует постоянная осевая нагрузка возрастающая при увели-

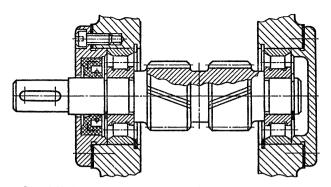


Рис. 9.29. Плавающий вал-шестерия (шевронного редуктора)

чении угла наклона зубьев. Радиальные однорядные подшипники следует выбирать в тех случаях, когда осевая нагрузка F_a составляет менее $0.35F_{rI}$ (F_{rI} — суммарная радиальная реакция).

В передачах с шевронными колесами или сдвоенными косозубыми, образующими шеврон, осевые усилия отсутствуют. Однако из-за неточности изготовления и сборки в зацепление может входить только один шеврон; при этом в нем возникает осевая сила, которая стремится переместить вал-шестерню вдоль оси. В связи с этим один из валов (обычно входной — быстроходный) делают плавающим; он самоустанавливается по колесу более тихоходного вала (рис. 9.29).

Для удобства сборки и регулировки ведущие валы и подщипники конических редукторов обычно монтируют в стаканах: конические роликоподшипники обеспечивают большую жесткость, чем шарикоподшипники, но потери на трение в них в 3-4 раза выше, чем в шарикоподшипниках. Для валов червячных редукторов при межосевом расстоянии $a_w \ge 180$ мм целесообразно червяк устанавливать на лва радиально-упорных подшипника с $\alpha = 26 \div 36^\circ$, а другую опору выполнять плавающей (см. рис. 9.12, 9.13). Валы червячных колес следует монтировать на радиально-упорных шариковых конических роликоподшипниках с углом контакта $\alpha = 12 \div 17^{\circ}$.

Конструкция стаканов дана на рис. 9.30; материал – серый чугун (СЧ 15).

Соотношения размеров стаканов: $h \approx 0.1D$; $h_1 \approx h$; $h_2 \approx 1,2h$; $e = d_B$; $f = (1,0 \div 1,2) d_B$; $\delta \approx h - (1 \div 1,5)$ мм, $D_2 = D_1 + (4 \div 1,5)$

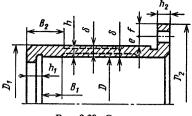


Рис. 9.30. Стакан

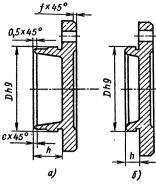


Рис. 9.31. Крышки глухие: a-c удлиненным бортом; 6-c бортом h<15 мм

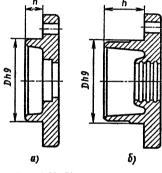


Рис. 9.32. Крышки сквозные: a - для h < 15 мм; 6 - h > 15 мм

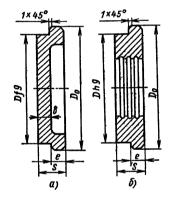
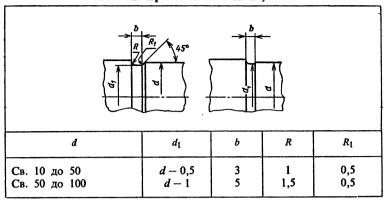
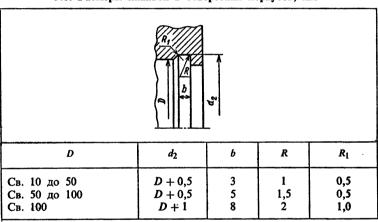


Рис. 9.33. Крышки закладные: a - глухая; 6 - сквозная


 \div 4,5) $d_{\rm B}$; $B_1\approx 1,2B$; $B_2\approx (1,3\div 1,5)B$; B- ширина кольца подшипника; $d_{\rm B}=6\div 12\,$ мм $(\approx 0,1D)$. Число винтов от 4 (при $D\leqslant 80\,$ мм) до 6 при $(D>80\,$ мм). Толщину стенки стакана h принимают в зависимости от

диаметра \vec{D} отверстия стакана по следующим зависимостям:


Конструкции прижимных глухих крышек показаны на рис. 9.31. Конструкция сквозных крышек (с отверстиями) дана на рис. 9.32.

В корпусах редукторов с горизонтальным разъемом предпочтительны врезные крышки (рис. 9.33): $S \approx 8 \div 12$ мм; для

9.7. Размеры канавок в валах, мм

9.8. Размеры канавок в отверстиях корпусов, мм

9.9. Шероховатость посадочных поверхностей валов и отверстий кориусов

Посадочные поверхности	Класс точности	R_a , мкм, для номинальных диаметров, мм			
	подшипников	до 80	более 80 до 500		
Валов и отверстий корпу- сов Торцов заплечиков Валов и корпусов	0 6 и 5 0 6 и 5	1,25 0,63 2,5 1,25	2,5 1,25 1,25 1,25		

 $D_0 = 50 \div 150$ мм $\delta \approx 5 \div 7$ мм; $e = (0.9 \div 1.0)\delta$; D_0 — диаметр отверстия под подшипник.

Для выхода шлифовальных кругов на валах и в корпусах рядом с заплечиками делают канавки (табл. 9.7, 9.8), однако они ослабляют вал, вызывая концентрацию напряжений, поэтому их можно выполнять только в валах, имеющих большой запас прочности. В тяжело нагруженных валах целесообразнее делать галтели.

Шероховатость посадочных мест назначают по табл. 9.9.

§ 9.5. КЛАССЫ ТОЧНОСТИ И ПОСАДКИ ПОДШИПНИКОВ КАЧЕНИЯ

ГОСТ 520-71 устанавливает пять классов точности подшипников качения, обозначаемых в порядке повышения точности: 0; 6; 5; 4; 2.

Подшипники высоких классов точности (5, 4, 2) относительно дороги. Например, подшипник 2-го класса приблизительно в 10 раз дороже аналогичного подшипника 0-го класса.

Допуски на наружные и внутренние кольца зависят от типа подшипника, его размеров и класса точности.

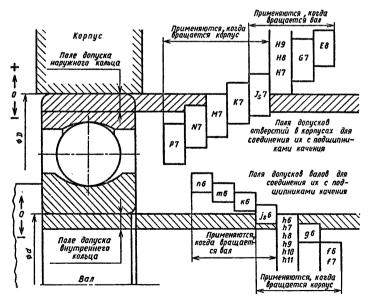


Рис. 9.34. Схема расположения полей допусков на внутренний и внешний диаметры подципников качения (на вал и корпус)

Расположение полей допусков колец подшипников показано на рис. 9.34 (по ГОСТ 520-71).

Посадку наружного кольца в корпус или стакан выполняют в системе вала.

Посадку внутреннего кольца подшипника на вал осуществляют по системе отверстия, поле допуска на диаметр отперстия внутреннего кольца подшипника расположено не в тело кольца, как это имеет место для основного отверстия, а «в воздух».

Сопряжение наружного кольца подшипника с отверстием корпуса или стакана выполняется обычно по переходным посадкам, обеспечивающим весьма малые натяги или небольшие зазоры, позволяющие кольцу при работе песколько проворачиваться относительно своего посадочного места. Это обеспечивает при местном нагружении более равномерный износ беговых дорожек, так как под место действия силы будут попадать все новые участки кольца. Посадку подшипников выбирают так, чтобы кольцо, сопрягаемое с вращающейся деталью, имело натяг (неподвижное соединение), а другое кольцо, сопрягаемое с неподвижной деталью, — небольшой зазор (проскальзывание).

Различают следующие виды нагружения колец: местное, циркуляционное и колебательное.

При местном нагружении результирующая радиальная нагрузка постоянно воспринимается лишь ограниченным участком дорожки и передается соответствующему участку посадочной поверхности вала или корпуса. Такой вид нагружения имеет место при постоянном направлении вектора F_{r_1} , приложенного к неподвижному кольцу подшипника, или при вращении вектора силы $F_{\mathfrak{q}}$ вместе с кольцом подшипника в одном направлении с одинаковой угловой скоростью.

При *циркуляционном* нагружении результирующая радиальная нагрузка последовательно воспринимается всей окружностью дорожки качения и передается также последовательно на всю окружность посадочной поверхности вала или корпуса.

Такое нагружение наблюдается, когда кольцо вращается относительно постоянной по направлению радиальной нагрузки или когда направление нагрузки изменяется (вращающаяся нагрузка) по отношению к неподвижному кольцу.

При колебательном нагружении на подшипник совместно действуют нагрузка F_{r1} , постоянная по направлению, и вращающаяся нагрузка F_{r2} , причем равнодействующая этих нагрузок не совершает полного оборота, а колеблется на определенном участке невращающегося кольца (на некоторый угол)

9.10. Посадки радиальных шарико- и роликоподшипников классов 0 и 6

	Поля д	опусков				
Нагружение кольца	валов	отверстий				
патружение кольца	При нагружении					
	внутреннего кольца	наружного кольца				
Местное	j _s 6, h6, g6, f6	$J_s6, J_s7, H7$				
Циркуляционное	k6, m6, n6, j _s 6	N7, M7, K7				
Колебательное	m6, k6, j _s 6	$K7, J_s7, H6$				

9.11. Посадки радиально-упорных шарико- и роликоподшипников

			руемо е њцо	Нерегулируемое кольцо				
Вид	нагружения колец		Поля допусков					
		валов	отверстий корпусов	валов	отверстий корпусов			
Циркуля	щионное	j _s 6, h6	J_s7	n6, m6, k6, j _s 6	N7, M7, K7, J _s 7			
Мест-	Кольцо перемеща- ется по посадочной поверхности	f7, g6, h6	Н7	_	_			
ное	Кольцо не переме- щается по посадоч- ной поверхности	j _s 6, h6	M7, K7, H7	j _s 6, h6	M7, K7, H7			

9.12. Подшинники шариковые и роликовые радиальные и шариковые радиально-упорные, кольца внутрениие

	Клас	c 0	Класс 6				
Интервалы номинальных диаметров	Предельные отклонения, мкм, отверстия внутреннего кольца						
	нижнее	верхнее	няжнее	верхнее			
Св. 10 до 18 » 18 » 30 » 30 » 50 » 50 » 80 » 80 » 120 » 120 » 180	-8 -10 -12 -15 -20 -25	0	-7 -8 -10 -12 -15 -18	0			

9.13. Подшиники шариковые и роликовые радиальные и шариковые радиально-упорные, кольца иаружные

	Клас	: 0	Класс 6			
Интервалы номинальных диаметров	Предельные отклонения, мкм, наружного кольца					
	нижнее	верхнее	нижнее	верхнее		
CB. 18 до 30 » 30 » 50 » 50 » 80 » 80 » 120 » 120 » 150 » 150 » 180 » 180 » 250	-9 -11 -13 -15 -18 -25 -30	0	-8 -9 -11 -13 -15 -18 -20	0		

Рекомендации по назначению посадок подшипников даны в табл. 9.10, 9.11. Предельные отклонения внутреннего и наружного колец шариковых и роликовых подшипников (классов точности 0 и 6) даны в табл. 9.12, 9.13.

§ 9.6. СМАЗЫВАНИЕ И УПЛОТНЕНИЕ ПОДШИПНИКОВЫХ УЗЛОВ

Для смазывания подшипников применяют пластичные и жидкие нефтяные смазочные материалы (табл. 9.14, 9.15). Требуемую вязкость масла можно определить по номограмме

9.14. Пластичные смазочные материалы

Наименование и марка смазки	гост	Температура эксплуатации, °С	Темпера- тура кап- лепаде- ния, °С
Гидратиро	ванные кальцие	вые солидолы	
Солидол синтетический (солидол С) Пресс-солидол С	4366 – 76 4366 – 76	От -20 до +65	85 – 105 85 – 95
Солидолы жировые, пресс-солидол	1033 – 79	От -25 до +65	75
	Многоцелевы	e	
Литол-24	21150-75	От -40 до +130	180

Наименование и марка смазки	гост	Температура эк- сплуатации, °С	Темпера- тура кап- лепаде- ния, °С						
Мор	озостойкие (туго	плавкне)							
ЦИАТИМ-201 ЦИАТИМ-203	6267 — 74 8773 — 73	От —60 до +90 От —50 до +90	175 150						
Натрие	вые и натриево-і	сальциевые	•						
Консталины жировые УТ-1	1957 – 73	От -20 до 120	130-150						
	Литиевые								
ВНИИ НП-242 ЭШ-176, марка А	20421-75 TY 38 10196- -76	От -40 до +100 От -25 до 100	170 - 205 170 - 200						
Термостой	кие (комплексны	е кальциевые)							
ЦИАТИМ-221С	ТУ 38 101419— —73	От -60 до 180	203 – 207						
Ваку	Вакуумные антифрикционные								
внии нп-274	19337 – 73	От -80 до 160	190-200						

9.15. Жидкие смазочные материалы

Наименование	FOCT	Вязка 10 ⁻⁶	Темпера- тура,. °С		
и обозначение масла	гост	при 50°C	при 100°C	вспы- шки	зат- верде- вания
Индустриальные: И-8А И-12А И-20А И-25А И-30А И-40А И-50А И-70А	20799 – 75	6-8 10-14 17-23 24-27 28-30 35-45 47-55 65-75	1	130 165 180 180 190 200 200 200	-20 -30 -15 -15 -15 -15 -20 -10

Наименование	ГОСТ	Вязк 10 ⁻⁶		Темпера- тура, °С	
и обозначение масла	1001	при 50°C	при 100°C	вспы- шки	зат- верде- вания
Авиационные: MC-14 MC-20C MK-22 MC-20	21743 – 76		14 20 22 20,5	200 250 230 200	-30 -18 -14 -18
Турбинное: 22 30 46 57	32-74	22-23 28-32 44-48 55-59	-	180 180 195 195	-15 -10 -10
П-28 (для прокатных станов)	64 80 – 78	_	26-30	285	-10
Грансмиссионное Автомобильное:	_		8	200	-25
для коробок передач для гипоидных пере- дач		-	20 – 32 14	-	-20 -25
Цилиндровое 38 Цилиндровое 52	6411 – 76 6411 – 76	_	38-44 44-59	300 310	-17 -5

(рис. 9.35): через точку пересечения вертикальной линии, соответствующей внутреннему диаметру подшипника d, с наклонной (соответствующей данной частоте вращения n) провести горизонталь (вправо или влево) до пересечения с вертикалью, которая соответствует рабочей температуре t. Через эту точку пересечения проводят наклонную прямую параллельно линиям частот вращения. Пересечение этой наклонной с вертикальной линией номограммы, соответствующей температуре $50\,^{\circ}$ C, на которой нанесены величины кинематической вязкости в m^2/c при

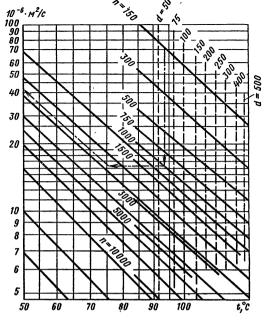


Рис. 9.35. Номограмма для выбора вязкости масла

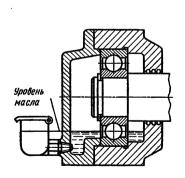


Рис. 9.36. Смазывание подшининика (масляная ванна)

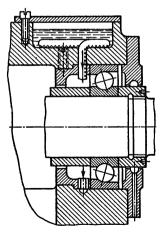


Рис. 9.37. Фитильное смазывание подшинника

(циркуляционная); масляным туманом (распылением). Масляную ванну применяют при $d_{\rm cp}n < 200 \cdot 10^3~{\rm mm \cdot of/muh}$ для горизонтальных валов, когда подшипник изолирован от общей системы смазки. Масло заливается в корпус через масленку, верхний уровень которой расположен по заданному уровню масла в корпусе.

Смазывание с помощью фитилей (рис. 9.37) применяют для горизонтальных и вертикальных валов при $d_{\rm cp}n \leqslant 60\cdot 10^3~{\rm mm}\cdot {\rm of}/{\rm muh}$. Смазывание разбрызгиванием применяют, когда подшипники установлены в корпусах, не изолированных от общей системы смазки узла. Вращающиеся детали (зубчатые колеса, диски и пр.), соприкасаясь с маслом, залитым в картер, при вращении разбрызгивают масло, которое попадает на тела качения и беговые дорожки колец подшипников.

Для защиты подшипников от обильных струй масла (которые создают быстроходные косозубые шестерни или червяки) и от попадания в них продуктов износа ставят защитные шайбы (рис. 9.38).

Смазывание под давлением через форсунки применяют для редукторов, работающих продолжительное время без перерывов, а также для опор высокоскоростных передач, в которых необходимо обеспечить интенсивный отвод теплоты.

Смазывание масляным туманом применяют для высокоскоростных легконагруженных подшипников. С помощью специальных распылителей под давлением в узел подается струя воздуха, которая увлекает частицы масла. Этот метод позволяет маслу проникнуть в подшипники, расположенные в труднодоступных местах, создает проточное смазывание при минимальном расходе масла, обеспечивает хорошее охлаждение подшипника, а давление предохраняет узел от загрязнения.

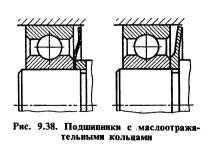
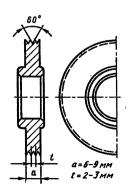



Рис. 9.39. Мазеудерживающее кольцо

 $\Pi_{\Lambda acmuчные}$ смазочные материалы применяют в узлах при $d_{cp}n < 300 \cdot 10^3$ мм · об/мин, когда окружающая среда содержит вредные примеси или температура узла резко изменяется.

Предельная температура узла должна быть не менее, чем на $20\,^{\circ}$ С ниже температуры каплепадения. Для отделения узла от общей смазочной системы применяют мазеудерживающие кольца (рис. 9.39), вращающиеся вместе с валом; кольцо имеет от двух до четырех канавок; зазор между кольцом и корпусом (стаканом) 0.1-0.3 мм. Кольцо должно быть установлено так, чтобы его торец выходил за стенку корпуса (стакана) на 1-2 мм (рис. 9.40).

В условиях высокого вакуума, интенсивного ионизирующего излучения, высоких и низких температур, газовых и агрессивных сред применяют твердые смазочные материалы: дисульфид молибдена, фторопласт, графит; их наносят тонким слоем на трущиеся поверхности.

Уплотняющие устройства по принципу действия разделяют на контактные (манжетные), лабиринтные и щелевые; центробежные и комбинированные.

Манжетные уплотнения (табл. 9.16) разделяют на два основных типа: тип I применяют при скорости скольжения $v \le 20$ м/с; тип II (с пыльником) применяют при $v \le 15$ м/с. Поверхность вала под уплотнением должна быть закаленной до твердости HRC 40, иметь шероховатость $Ra \le 0.32$ мкм, а для отверстия Ra = 2.5 мкм. Допуск вала под уплотнение должен соответствовать h11.

Для извлечения манжет в крышках делают 2-3 отверстия. Ресурс манжет – до 5000 ч; они надежно работают как при пластичных, так и при жидких смазочных материалах при перепадах температур от -45° до +150°C.

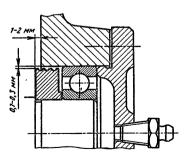


Рис. 9.40. Узел подшинника с использованием пластичного смазочного материала

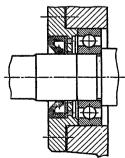


Рис. 9.41. Узел подшипника с манжетным уплотнением (откры-

9.16. Манжеты резиновые армированные (по ГОСТ 8752 – 79) Размеры, мм

	d	D	h_1	h ₂
Tun I Tun II	10; 11 12; 13; 14 15; 16 17 18; 19	26 28 30 32 35	7	-
с пыльником	20; 21; 22 24 25 26 30; 32 35; 36; 38 40 42 45 48; 50 52	40 41 42 45 52 58 60 62 65 70 75	10	14
$\frac{h_1}{h_2}$	55; 56; 58 60 63; 65 70; 71 75 80 85 90; 95 100 105	80 85 90 95 100 105 110 120 125 130	12	16

На рис. 9.41 показана установка открытой манжеты, рекомендуемая только при давлении внутри узла, близком к атмосферному. При высоком давлении в узле следует применять закрытые уплотнения (рис. 9.42), так как они не выдавливаются из крышки.

При работе узла в особо пыльной среде ставят двойные уплотнения (рис. 9.43, a) или двухкромочные манжеты с пыльником (рис. $9.43, \delta$).

Лабиринтные уплотнения применяют при любых скоростях. Осевое уплотнение для разъемных корпусов показано на рис. 9.44; радиальное — на рис. 9.45 и щелевое — на рис. 9.46. Зазоры заполняют пластичным смазочным материалом, темпе-

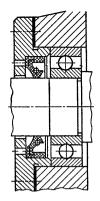


Рис. 9.42. Узел подининика с манжетным уплотнением (закрытые)

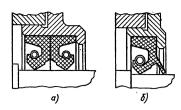


Рис. 9.43. Способы установки манжетных уплотнений

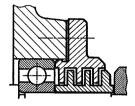


Рис. 9.44. Лабиринтное (осевое) уплотнение

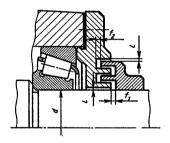


Рис. 9.45. Лабиринтное (радиальное) уплотнение

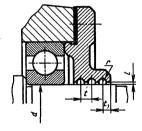
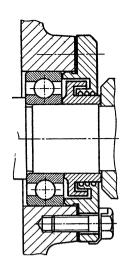
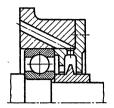



Рис. 9.46. Щелевое уплотнение


ратура каплепадения которого должна быть выше температуры узла. Размеры канавок и зазоры лабиринтных и щелевых уплотнений даны в табл. 9.17. Одна из конструкций

9.17. Размеры лабиринтных и щелевых уплотнений, мм (см. рис. 9.45 и 9.46)

d вала	e	fì	f_2	t	t_1	r
10-45	0,2	1	1,5	4,5	3	1,5
50-75	0,3	1,5	2,5	4,5	3	2
80-110	0,4	2	3	6	4	2

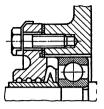


Рис. 9.48. Уплотнение центробежного типа

узла подшипника с комбинированным уплотнением представлена на рис. 9.47.

Уплотнения центробежного типа показаны на рис. 9.48: масло, попадающее на вращающиеся детали, отбрасывается центробежной силой обратно в подшипник.

§ 9.7. ВЫБОР ПОДШИПНИКОВ КАЧЕНИЯ

Основные критерии работоспособности подшипника качения — его динамическая и статическая грузоподъемность.

Метод подбора подшипников по динамической грузоподъемности применяют в случаях, когда частота вращения кольца n > 1 об/мин. При $n = 1 \div 10$ об/мин в расчетах следует принимать n = 10 об/мин. Подбор подшипников по статической грузоподъемности здесь не рассматривается (см. [16]).

Номинальная долговечность (ресурс) подшипника в миллионах оборотов

$$L = \left(\frac{C}{P}\right)^{p},\tag{9.1}$$

где C — динамическая грузоподъемность по каталогу; P — эквивалентная нагрузка; p — показатель степени: для шарикоподшипников p = 3; для роликоподшипников p = 10/3.

Номинальная долговечность в часах

$$L_{h} = \frac{10^{6}L}{60n} = \frac{10^{6}}{60n} \left(\frac{C}{P}\right)^{p}.$$
 (9.2)

При расчетах следует строго следить за тем, чтобы в формулах С и Р были выражены в одних и тех же единицах.

Для однорядных и двухрядных сферических радиальных шарикоподшипников, однорядных радиально-упорных шариком роликоподшипников эквивалентная нагрузка

при
$$\frac{F_a}{VF_r} > e$$
 $P = (XVF_r + YF_a) K_6 K_T;$ (9.3)

при
$$\frac{F_a}{VF_*} < e$$
 $P = VF_*K_6K_{\scriptscriptstyle T}$, (9.4)

где V— коэффициент; при вращении внутреннего кольца V = 1, при вращении наружного — V = 1,2; F_r — радиальная нагрузка; F_a — осевая.

Значения X и Y см. в табл. 9.18 и табл. П4 приложения. Значения K_6 — в табл. 9.19; значения $K_{\rm T}$ — в табл. 9.20.

9.18. Значения X и Y для подшипников Радиальные однорядные и двухрядные

$\frac{F_a}{C_o}$	$\frac{F_a}{VF_r}$	€ e	$\frac{F_a}{VF_r} \ge$	e	
	X	Y	Х	Y	1
0,014 0,028 0,056 0,084 0,11 0,17 0,28 0,42 0,56	1	0	0,56	2,30 1,99 1,71 1,55 1,45 1,31 1,15 1,04 1,00	0,19 0,22 0,26 0,28 0,30 0,34 0,38 0,42 0,44

Радиально-упорные конические и радиальные самоустанавливающиеся роликоподшипники

	Одноря	ядные			Двухрядные			Двухрядные			
F _d	<u>'</u> ≤ e	$\leq e$ $\frac{F_a}{VF_r} \geq e$ $\frac{F_a}{F_r} \leq e$		$\frac{F_a}{VF_r} \ge e$ $\frac{F_a}{F_r} \le e$ $\frac{F_a}{VF_r} \ge e$		$\frac{F_a}{VF_r} \ge e$	e				
X	Y	X	Y	X	Y	X	Y				
1	0	0,4	0,4 ctg α	1	0,45ctg α	0,67	0,67 ctg α	1,5 tg α			

			Однор	ядные			Двухр	ядные		
α°	$\frac{iF_a}{C_0}$	F _a	- < e	F _a	->e	$\frac{F_a}{VF_t}$	- <e< td=""><td>$\frac{F_a}{VF_r}$</td><td>->e</td><td>e</td></e<>	$\frac{F_a}{VF_r}$	->e	e
		X	Y	X	- Y	X	Y	X	Y	
		Pa	диальн	о -упор н	ые шај	рико п о	дшипни	іки		
12	0,014 0,029 0,057 0,086 0,11 0,17 0,29 0,43 0,57	1	0	0,45	1,81 1,62 1,46 1,34 1,22 1,13 1,04 1,01 1,00	1	2,08 1,84 1,60 1,52 1,39 1,30 1,20 1,16 1,16	0,74	2,94 2,63 2,37 2,18 1,98 1,84 1,69 1,64 1,62	0,30 0,34 0,37 0,41 0,45 0,48 0,52 0,54
15	0,015 0,029 0,058 0,087 0,12 0,17 0,29 0,44 0,58	1	0	0,44	1,47 1,40 1,30 1,23 1,19 1,12 1,02 1,00 1,00	1	1,65 1,57 1,46 1,38 1,34 1,26 1,14 1,12	0,72	2,39 2,28 2,11 2,00 1,93 1,82 1,66 1,63 1,63	0,38 0,40 0,43 0,46 0,47 0,50 0,55 0,56
18, 19, 20 24, 25, 26				0,43	1,00		0,02 0,92	0,70	1,63 1,44	0,57
30 35, 3 40		1	0	0,39 0,37 0,35	0,76 0,66 0,57	1	0,78 0,66 0,55	0,63 0,60 0,57	1,24 1,07 0,93	0,80 0,95 1,14

9.19. Значение коэффициента K_6

		пциста Х6
Нагрузка на подшипник	K ₆	Примеры использования
Спокойная без толчков	1,0	Ролики ленточных конвейеров
Легкие толчки, кратковременные перегрузки до 125% номинальной (расчетной) нагрузки	1,0-1,2	Прецизионные зубчатые передачи, металлорежущие станки (кроме строгальных и долбежных), блоки, электродвигатели малой и средней мощности, легкие вентиляторы и воздуходувки
Умеренные толчки, вибрационная нагрузка, кратковременная перегрузка до 150% номинальной (расчетной) нагрузки	1,3-1,5	Буксы рельсового подвижного состава, зубчатые передачи 7-й и 8-й степеней точности, редукторы всех конструкций, винтовые конвейеры
То же, в условиях повышенной надежности	1,5-1,8	Центрифуги, мощные электрические машины, энергетическое оборудование
Нагрузки со значительными толчками и вибрацией, кратковременные перегрузки до 200% номинальной (расчетной) нагрузки	1,8-2,5	Зубчатые передачи 9-й степени точности, дробилки и копры, кривошипно-шатунные механизмы, валки прокатных станов, мощные вентиляторы и эксгаустеры
Нагрузки с сильными ударами, кратковременные перегрузки до 300% номинальной (расчетной) нагрузки	2,5-3,0	Тяжелые ковочные машины, лесопильные рамы, рабочие рольганги у крупносортных станов, блюмингов и слябингов

9.20. Значение коэффициента K_{T}

Рабочая температура подшипника, °C	125	150	175	200	225	250	350
Температурный коэффициент $K_{\scriptscriptstyle T}$	1,05	1,10	1,15	1,25	1,35	1,40	1,45

Эквивалентная нагрузка для однорядных и двухрядных подшипников с короткими цилиндрическими роликами (без бортов на наружном или внутреннем кольцах)

$$P = F_r V K_6 K_{\tau}. \tag{9.5}$$

Эквивалентная нагрузка для упорных подшипников (шариковых и роликовых)

$$P = F_a K_6 K_{\tau}. \tag{9.6}$$

Для радиально-упорных шарикоподшипников с номинальным углом контакта $\alpha=15^\circ$ и конических роликоподшипников коэффициенты радиальной (X) и осевой (Y) нагрузки выбирают в зависимости от отношения F_a/VF_r , коэффициента осевого нагружения e и угла контакта α . Величины X и Y для радиальных и радиально-упорных шарикоподшипников с углом $\alpha<15^\circ$ выбирают по величине отношения осевой нагрузки к его статической грузоподъемности: F_a/C_0 . При выборе Y следует применять линейную интерполяцию.

При подборе радиальных и радиально-упорных шарикоподшипников, а также конических роликовых подшипников необходимо учитывать, что осевая нагрузка не оказывает влияния на величину эквивалентной нагрузки до тех пор, пока значение F_a/VF_r не превысит определенной величины e(значение e выбирают по таблицам или формулам).

Учитывая указанное выше, в формуле для определения эквивалентной нагрузки при $F_a/VF_r < e$ следует принимать Y = 0.

Для шариковых радиально-упорных подшипников с углом контакта $\alpha = 12^\circ$ величину e определяют по формуле

$$\lg e = \frac{\lg \frac{F_r}{C_0} 1,144}{4,729}. (9.7)$$

Для тех же подшипников с углом контакта $\alpha = 15^{\circ}$

$$\lg e = \frac{\lg \frac{F_r}{C_0} 1,766}{7,363}.$$
 (9.8)

Для подшипников с углами контакта $\alpha < 18^\circ$ величину e можно также определить из графика (рис. 9.49). При подборе двухрядных радиально-упорных шариковых или конических роликовых подшипников надо иметь в виду, что даже небольшие осевые усилия влияют на величину эквивалентной

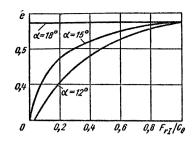


Рис. 9.49. График для определения e в зависимости от F_r/C_0 и α

нагрузки. Следует учитывать, что при расчете динамической грузоподъемности и эквивалентной динамической нагрузки узла, состоящего из сдвоенных радиально-

упорных подшипников, установленных узкими или широкими торцами наружных колец друг к другу, пару одинаковых подшипников рассматривают как один двухрядный радиально-упорный подшипник.

Сдвоенные радиально-упорные шариковые или конические роликовые подшипники при отношении $F_a/F_r < e$ рассчитывают как двухрядные.

Если $F_a/F_r > e$, то в двухрядных подшипниках будет работать только один ряд тел качения, и величину динамической грузоподъемности следует принимать такой же, как для однорядного подшипника.

В радиально-упорных подшипниках при действии на них радиальных нагрузок возникают осевые составляющие S, определяемые по формулам:

$$S = 0.83eF_r$$
 $S = eF_r$ $\left. \begin{array}{c} -$ для конических роликоподшипников, $-$ для радиально-упорных шарикоподшипников

Осевые нагрузки, действующие на радиально-упорные конические подшипники, определяют с учетом схемы действия внешних усилий в зависимости от относительного расположения подшипников (рис. 9.50). Если радиально-упорные

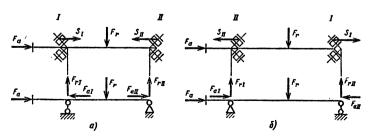


Рис. 9.50. Схема действия сил в радиально-унорных подшининках, установленных: a — враспор; δ — врастяжку

подшипники установлены по концам вала враспор или врастяжку, то результирующие осевые нагрузки каждого подшипника определяют с учетом действия внешней осевой нагрузки (осевое усилие червяка, осевые усилия косозубых или конических зубчатых колес и пр.); должны быть учтены осевые составляющие от радикальных нагрузок, действующие на кажлый полнипник.

Результирующие осевые нагрузки подшипников определяют по табл. 9.21. Ориентировочные рекомендации по выбору полиципников даны в табл. 9.22.

9.21. Формулы для расчета осевых нагрузок

№ п/п	Усло	Осевые нагрузки	
1	$S_{\rm I} \ge S_{\rm II};$ $F_a \ge 0$	$ \longrightarrow _{S_{I}} \longrightarrow _{S_{I}}$	$F_{aI} = S_I$
2	$S_{\rm I} \leq S_{\rm II};$ $F_a \geq S_{\rm II} - S_{\rm I}$	S _H	$F_{a\mathrm{II}} = S_{\mathrm{I}} + F_{a}$
3	$S_{\rm I} \leq S_{\rm II};$ $F_a \leq S_{\rm II} - S_{\rm I}$	$S_{II} \leftarrow S_{II}$	$F_{aI} = S_{II} - F_a$ $F_{aII} = S_{II}$

9.22. Рекомендации по выбору радиально-упорных шарикоподившников

Отношение $\frac{F_a}{F_{rI}}$	Конструктив- ное обозна- чение и угол контакта	Осевая со- ставляющая радиальной нагрузки S в долях от F_{rI}	Примечание
0,81 – 1,2	$\alpha = 12^{\circ}$ $46000;$ $\alpha = 26^{\circ}$ $66000;$	$0,6F_{rI}$	легкой и сверхлегкой серий При весьма высоких скоростях легкая серия предпочтительнее Для высоких скоростей подшип- ник с данным углом контакта

 Π римечание. При $\dfrac{F_a}{F_{r\mathrm{I}}} < 0.35$ применяют однорядные радиальные шариковые подшипники.

При определении осевых нагрузок двухрядных (сдвоенных) радиально-упорных подшипников осевые составляющие S не учитывают.

В радиально-упорных подшипниках радиальные реакции считаются приложенными к валу в точках пересечения нормалей, проведенных к серединам контактных площадок. Расстояние а (см. рис. 9.17 и 9.20) между этой точкой и торцом подшипника для однорядных радиально-упорных шарикоподшипников

$$a = 0.5 \left(B + \frac{(d+B)}{2} \operatorname{tg} \alpha \right); \tag{9.10}$$

для однорядных роликовых конических подщипников

$$a = \frac{T}{2} + \frac{(d+D)e}{6}. (9.11)$$

Если в двухрядных радиально-упорных подшипниках работают оба ряда тел качения, то считают, что радиальная реакция приложена посередине подшипника. Если же работает только один ряд, то радиальные реакции, как и для однорядных подшипников, смещаются на расстояние

$$a = 0.5 \left(\frac{3B}{2} + \frac{(d+D)}{2} \operatorname{tg} \alpha \right),$$
 (9.12)

для двухрядных конических роликоподшипников

$$a=\frac{3T}{4}+\frac{(d+D)e^{-}}{6}.$$

Величины В, d, T, α, е выбирают из таблиц приложения.

Подшипники, воспринимающие нагрузку в неподвижном состоянии или при n < 1 об/мин, подбирают по статической грузоподъемности C_0 и по эквивалентной статической нагрузке P_0 так, чтобы $P_0 \le C_0$. Для радиальных и радиально-упорных шарико- и роликоподшипников P_0 определяют как наибольшее значение из двух формул:

$$\left.\begin{array}{l}
P_0 = X_0 F_r + Y_0 F_a; \\
P_0 = F_r.
\end{array}\right\}$$
(9.13)

Для радиальных роликоподшипников с короткими цилиндрическими роликами $P_0 = F_{r'}$.

Значения коэффициентов X_0 , Y_0 даны в табл. 9.23.

Подшипники для переменных режимов работы подбирают по эквивалентной нагрузке и условной частоте вращения. Если

9.23. Значення коэффициентов радиальной X_0 и осевой Y_0 нагрузок

Тип подшипника		оядные ипники	Двухрядные подшипники		
	<i>X</i> ₀	<i>Y</i> ₀	<i>X</i> ₀	Y ₀	
Шарикоподшипники радиальные	0,6	0,5	0,6	0,5	
Шарикоподшипники радиально-упорные с α°: 18 19 20 25 26 30 35 36 40	0,5	0,43 0,43 0,42 0,38 0,37 0,33 0,29 0,28 0,26	1	0,86 0,86 0,84 0,76 0,74 0,66 0,58 0,56	
Шарикоподшипники самоустанавливающиеся и роликоподшипники самоустанавливающиеся и конические	0,5	0,22 ctg α	1	0,44 ctg α	

Примечание. Для пары одинаковых однорядных радиально-упорных подшипников, установленных узкими или широкими торцами колец друг к другу, следует применять те же значения коэффициентов X_0 и Y_0 , что и для одного двухрядного. Для двух и более одинаковых однорядных радиально-упорных шарикоподшипников, установленных последовательно (по схеме «тандем»), следует применять те же значения коэффициентов X_0 , Y_0 , что и для одного такого же подшипника.

нагрузка меняется по линейному закону от P_{\min} до P_{\max} (при постояннои частоте вращения), то эквивалентная нагрузка

$$P = \frac{P_{\min} + 2P_{\max}}{3}.$$
 (9 14)

Если нагрузка и частота вращения изменяются по более сложным законам, то эквивалентная нагрузка

$$P = \sqrt[3]{\frac{P_1^3 L_1 + P_2^3 L_2 + P_3^3 L_3 + \dots + P_n^3 L_n}{L}},$$
 (9.15)

где P_1 , P_2 , P_3 , ..., P_n – постоянные нагрузки, действующие в течение L_1 , L_2 , L_3 , ..., L_n миллионов оборотов; L – общее число миллионов оборотов, в течение которого действуют указанные нагрузки.

Значения L₄, ч, даны в табл. 9.24, 9.25.

По ГОСТ 16162-85 минимальная долговечность подшипников для зубчатых редукторов $L_h = 10\,000$ ч, червячных $L_h = 5000$ ч.

9.24. Величина отношения $\frac{C}{P}$ для шариковых подшипников в

Долговечность						Част	ота вра	щения,
<i>L_h</i> , ч	10	25	63	100	160	200	320	400
2 00	1,06	1,45	1,96	2,29	2,67	2,88	3,36	3,63
3 200	1,24	1,68	2,29	2,67	3,11	3,36	3,91	4,23
4 000	1,34	1,82	2,47	2,88	3,36	3,63	4,23	4,56
5 000	1,45	1,96	2,67	3,11	3,63	3,91	4,56	4,93
6 300	1,56	2,12	2,88	3,36	3,91	4,23	4,93	5,32
8 000	1,68	2,29	3,11	3,63	4,23	4,56	5,32	5,75
10 000	1,82	2,47	3,36	3,91	4,56	4,93	5,75	6,20
12 500	1,96	2,67	3,63	4,23	4,93	5,32	6,20	6,70
16 000	2,12	2,88	3,91	4,56	5,32	5,75	6,70	7,23
20 000	2,29	3,11	4,23	4,93	5,75	6,20	7,23	7,81
25 000	2,47	3,36	4,56	5,32	6,20	6,70	7,81	8,43
32 000	2,67	3,63	4,93	5,75	6,70	7,23	8,43	9,11
40 000	2,88	3,91	5,32	6,20	7,23	7,81	9,11	9,83

9.25. Величина отношения $\frac{C}{P}$ для роликовых подшишников

Долговечность						Част	ота вра	щения,
L_h , r	10	25	63	100	160	200	320	400
2 000	1,05	1,39	1,83	2,11	2,42	2,59	2,97	3,19
3 200	1,21	1,60	2,11	2,42	2,78	2,97	3,42	3,66
4 000	1,30	1,71	2,26	2,59	2,97	3,19	3,66	3,92
5 000	1,39	1,83	2,42	2,78	3,19	3,42	3,92	4,20
6 300	1,49	1,97	2,59	2,97	3,42	3,66	4,20	4,50
8 000	1,60	2,11	2,78	3,19	3,66	3,92	4,50	4,82
10 000	1,71	2,26	2,97	3,42	3,92	4,20	4,82	5,17
12 500	1,83	2,42	3,19	3,66	4,20	4,50	5,17	5,54
16 000	1,97	2,59	3,42	3,92	4,50	4,82	5,54	5,94
20 000	2,11	2,78	3,66	4,20	_ 4,82	5,17	5,94	6,36
25 000	2,26	2,97	3,92	4,50	5,17	5,54	6,36	6,81
32 000	2,42	3,19	4,20	4,82	5,54	5,94	6,81	7,30
40 000	2,59	3,42	4,50	5,17	5,94	6,36	7,30	7,82

Подбор подшипников шариковых и радиальных с цилиндрическими роликами при действии на них только радиальных нагрузок ведут в таком порядке:

- а) выполняют эскизную компоновку узла и приближенно намечают расстояние между подшипниками;
 - б) определяют реакции опор;
 - в) определяют эквивалентные нагрузки подшипников;
 - Γ) задавшись долговечностью L_h наиболее нагруженного

зависимости от долговечности L_h и частоты вращения n

 об/мин								
500	630	800	1000	1250	1600	2000	2500	3200
3,91	4,23	4,56	4,93	5,32	5,75	6,20	6,70	7,23
4,56	4,93	5,32	5,75	6,20	6,70	7,23	7,81	8,43
4,93	5,32	5,75	6,20	6,70	7,23	7,81	8,43	9,11
5,32	5,75	6,20	6,70	7,23	7,81	8,43	9,11	9,83
5,75	6,20	6,70	7,23	7,81	8,43	9,11	9,83	10,6
6,20	6,70	7,23	7,81	8,43	9,11	9,83	10,6	11,5
6,70	7,23	7,81	8,43	9,11	9,83	10,6	11,5	12,4
7,23	7,81	8,43	9,11	9,83	10,6	11,5	12,4	13,4
7,81	8,43	9,11	9,83	10,6	11,5	12,4	13,4	14,5
8,43	9,11	9,83	10,6	11,5	12,4	13,4	14,5	15,6
9,11	9,83	10,6	11,5	12,4	13,4	14,5	15,6	16,8
9,83	10,6	11,5	12,4	13,4	14,5	15,6	16,8	18,2
10,6	11,5	12,4	13,4	14,5	15,6	16,8	18,2	19,6

в зависимости от долговечности L_h и частоты вращения n

 об/мин									
500	630	800	1000	1250	1600	2000	2500	3200	
3,42 3,92 4,20 4,50 4,82 5,17 5,54 5,94 6,36 6,81 7,30 7,82	3,66 4,20 4,50 4,82 5,17 5,54 5,94 6,36 6,81 7,30 7,82 8,38	3,92 4,50 4,82 5,17 5,54 5,94 6,36 6,81 7,30 7,82 8,38 8,98	4,20 4,82 5,17 5,54 5,94 6,36 6,81 7,30 7,82 8,38 8,98 9,62	4,50 5,17 5,54 5,94 6,36 6,81 7,82 8,38 8,98 9,62 10,3	4,82 5,54 5,94 6,36 6,81 7,30 7,82 8,38 8,98 9,62 10,3 11,0	5,17 5,94 6,36 6,81 7,30 7,82 8,38 8,98 9,62 10,3 11,0 11,8	5,54 6,36 6,81 7,30 7,82 8,38 8,98 9,62 10,3 11,0 11,8 12,7	5,94 6,81 7,30 7,82 8,38 8,98 9,62 10,3 11,0 11,8 12,7 13,6	
8,38	8,98	9,62	10,3	11,0	11,8	12,7	13,6	14,6	

подшипника, вычисляют по формуле (9.2) требуемую динамическую грузоподъемность его C;

д) подбирают по диаметру посадочного места номер подшипника, начиная с легких серий, находят его динамическую грузоподъемность и проверяют выполнение условия $C \leq [C]$, где [C] — значение динамической грузоподъемности по табл. $\Pi 3 - \Pi 5$ приложения или по каталогу.

Если это условие не выполнено, то переходят от легкой серии к средней или тяжелой (при том же диаметре цапфы d). Если подшипник по своим габаритам применить в данном узле нет возможности, то следует перейти к другому типу подшипника (например, от шариковых к роликовым) или к другой схеме расположения их на валу. При осложнениях в выборе радиально-упорных подшипников (при наличии больших осевых нагрузок и др.) рекомендуется переходить на подшипники с большим углом контакта ($\alpha = 26 \div 36^\circ$). В некоторых случаях может оказаться, что все эти меры не дадут желаемого эффекта, тогда следует увеличить диаметр посадочного места и проверить подшипник большего номера.

Если [C] значительно выше C даже при применении подшипника легкой серии (что часто имеет место для тихоходных валов редукторов с цилиндрическими прямозубыми колесами и для валов колес червячных редукторов), то диаметр цапфы вала уменьшать ни в коем случае не следует, так как он определен из расчета на прочность; расчетная долговечность подшипника будет намного больше регламентированной.

Выбор радиально-упорных шариковых и конических роликовых подшипников ведут в другой последовательности:

- а) учитывая условия эксплуатации, конструкцию узла, диаметр цапфы, намечают типоразмер подшипника;
- б) выполняют эскизную компоновку узла, определяют точки приложения радиальных реакций (размер a, который зависит от e);
 - в) определяют суммарные реакции опор;
- г) вычисляют эквивалентные нагрузки подшипников (коэффициенты X и Y зависят от величины e, для нахождения которой необходимо знать типоразмер подшипника);
- д) по таблицам приложения или по каталогу определяют динамическую грузоподъемность намеченного подшипника;
- е) по эквивалентной нагрузке и динамической грузоподъемности вычисляют теоретическую долговечность подшипника, которая не должна быть меньше требуемой; если это условие

не обеспечивается, то выбирают подшипники других серий и типов, увеличивают диаметр цапфы вала.

Примеры подбора подшипников приведены в гл. XII.

§ 9.8. ПОДШИПНИКИ СКОЛЬЖЕНИЯ

Исходными данными для проектирования опор скольжения служат следующие показатели: нагрузка на опору — ее величина, направление и график изменения; частота вращения вала; диаметр цапфы, определяемый из предшествующего расчета вала и его конструкции; условия эксплуатации.

В соответствии с этими данными конструктор намечает тип подшипника, руководствуясь стандартами и нормалями; определяет основные размеры его, выбирает материал вкладыша, виды смазывания.

В курсовых проектах, выполняемых в техникумах, подшипники скольжения проектируют для опор валов редукторов в виде встроенных в корпус конструкций. Материал вкладышей выбирают из группы антифрикционных сплавов (табл. 9.26 и 9.27), порошковой металлокерамики (пористые бронзо- и железографит).

9.26.	Антиф	рикционный	чугуи	ДЛЯ	подшипников	скольжения

Марка	Твердость <i>НВ</i>	[p], M∏a	v, м/с	[p v], МПа · м/с
АЧС-1*	180-240	0,05 9	2 0,2	0,1 1,8
A4C-2*	190 – 229	0,1 6,0	3 0,75	0,3. 4,5
АЧС-3	160 — 190	0,1 6	3 0,75	0,3 4,5
АЧВ-1*	210-260	0,5 12	5 1	2,5 12
АЧВ-2	167 – 197	0,5 12	1 5	2,5 12

^{*} Термообработка вала — закалка или нормализация.

Примечание. Для уменьшения износа вала следует выбирать марку чугуна, имеющую твердость ниже, чем у вала.

Смазывание — непрерывное, жидким смазочным материалом высокой вязкости, в основном смазочными маслами марок И-40А, И-50А, И-70А. В зависимости от толщины смазочного слоя, образующегося между трущимися поверхностями, различают следующие виды смазок:

гидродинамическая смазка, осуществляемая при высокой скорости скольжения, сравнительно небольшой удельной нагрузке и соответствующей вязкости смазочного масла:

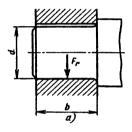
гидростатическая смазка, применяемая для опор, несущих большую нагрузку при малой скорости скольжения; смазочная жидкость, подаваемая под давлением, разделяет трущиеся поверхности при любом режиме работы; расчет опор для этих двух видов смазки см. [17];

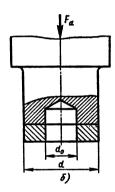
граничная и полужидкостная смазки карактеризуются тем, что тонкий слой жидкого смазочного материала, образующийся между трущимися поверхностями, не отделяет их полностью друг от друга; такой процесс происходит в опорах при малой скорости скольжения, например, в периоды пуска и останова, при реверсе и колебаниях нагрузки. Указанные особенности типичны для опор валов редукторов. Для уменьшения сил трения и ограничения изнашивания трущихся поверхностей проектируемый подшипник должен удовлетворять двум условиям: удельная нагрузка на единицу расчетной поверхности вкладыша не должна превышать допускаемой величины:

$$p = \frac{F}{A} \leqslant [p]; \tag{9.16}$$

9.27. Бронза для вкладышей подшинников	скольжения
--	------------

Марка	Заготовка	[p], МПа	[pv], МПа∙м/с
БрО5Ц5С5	Отливки	6	10
БрОФ 6,5-0,15	Отливки	15	15
БрА9ЖЗЛ	Пруток, поковка Отливки	20	12
БрА10Ж3Мп2	Пруток, поковка	20	15
БрАЖС7-1, 5-1,5	Отливки		12


 Π р и м е ч а н и е. Буквы означают элементы, входящие в сплав: O – олово, Π – цинк, C – свинец, Φ – фосфор, Π – железо, Π – марганец; цифры означают процентное содержание элементов в сплаве.


второе условие связано с ограничением нагрева: произведение величины p на скорость скольжения v не должно превышать допускаемого значения:

$$pv < [pv]. (9.17)$$

Здесь p-в МПа (соответствует численно H/мм²); нагрузка на подшипник F-в H; проекция опорной поверхности на плоскость, перпендикулярную вектору F, A-в мм². Значения [p] и [pv] приведены в табл. 9.26 и 9.27.

Опорная поверхность круглоцилиндрических подшипников, несущих радиальную нагрузку (рис. 9.51, a; 9.52 и 9.53), A = bd; средние значения $b = (0.5 \div 1.2)d$. При больших значениях b вкладыши надо выполнять самоустанавливающимися.

Ряс. 9:51. Схема нагружения подшипников: а — радиального; б — упорного (подпятника)

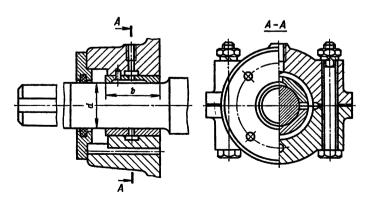


Рис. 9.52. Подшипник скольжения для радиальной нагрузки (без осевой фиксации вала)

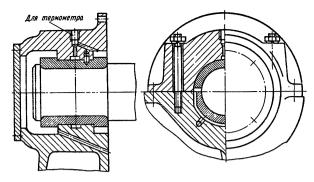


Рис. 9.53. Подцинник для радиальной нагрузки, фиксирующий вал в осевом направлении

Опорная поверхность подшипника, несущего осевую нагрузку (рис. $9.51, \delta$),

$$A=\frac{\pi}{4}(d^2-d_0^2).$$

При проверке кольцевой опорной поверхности по фактору pv определяют среднюю скорость скольжения $v_{\rm cp}$ на приведенном радиусе пяты

$$R_{\rm np} = 0.33 \, \frac{d^3 - d_0^3}{d^2 - d_0^2}.\tag{9.18}$$

Вкладыш подшипника, нагружаемого радиальной и осевой силами, выполняют с буртиком (рис. 9.54) толщиной $s = 0.03d + (1 \div 3)$ мм; высота буртика $H = 1.2d + (3 \div 5)$ мм.

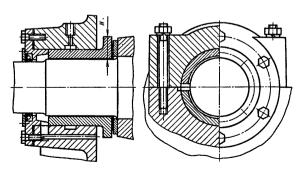


Рис. 9.54. Подшипник для радиальной и осевой нагрузок

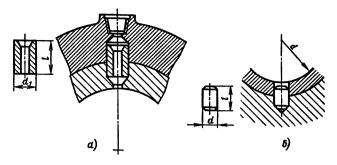


Рис. 9.55. Способы фиксации вкладына в корпусе: a — закрепительной втулкой; 6 — штифтом

Посадка вкладыша в корпус – с натягом: $\frac{H7}{p6}$, $\frac{H8}{n7}$, $\frac{H9}{s8}$; сопряжение с валом – с зазором: $\frac{H8}{f8}$, $\frac{H9}{f9}$.

Для предотвращения проворачивания вкладыша ставят закрепительную втулку или штифт (рис. 9.55) диаметром $d_1 \approx 0.3d$ и длиной $l \approx 0.3d$. Диаметр болтов или шпилек, крепящих крышку подпипника, $d_2 \approx 0.3d$, но не меньше М10 во избежание по-

вреждения резьбы при нерегулируемой затяжке гайки.

Пример. Рассчитать подшипник скольжения вала червячного колеса редуктора (рис. 9.56); радиальная нагрузка на подшипник $F_r = 11$ кH, осевая $F_a = 4.4$ кH, диаметр цапфы вала d = 80 мм, частота вращения n = 115 об/мин.

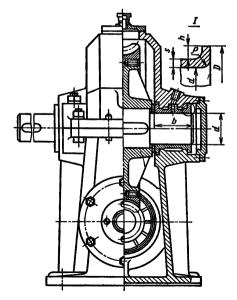


Рис. 9.56. Червячный редуктор с ведомым валом на подшипниках скольжения

Решение. Принимаем ширину вкладыша $b_0 = 0.8d = 0.8 \cdot 80 = 64$ мм; учитывая фаски, примем рабочую ширину вкладыша b = 60 мм; для определения скорости скольжения вычисляем предварительно угловую скорость вала

$$\omega = \frac{\pi n}{30} = \frac{3,14 \cdot 115}{30} \approx 12 \text{ pag/c}.$$

Скорость скольжения $v = 0.5\omega d = 0.5 \cdot 12 \cdot 80 \cdot 10^{-3} = 0.48$ м/с. Среднее давление на рабочую поверхность вкладыща

$$p = \frac{F_r}{db} = \frac{11 \cdot 10^3}{80 \cdot 60} = 2.3 \text{ M}\Pi_{a}.$$

Произведение

$$pv = 2.3 \cdot 0.48 = 1.1 \text{ M}\Pi a \cdot m/c.$$

По табл. 9.26 выбираем материал для вкладыша — антифрикционный чугун АЧС-1, для которого при $v=2\,$ м/с имеем

$$[p] = 0.05 \text{ M}\Pi a; [pv] = 0.1 \text{ M}\Pi a \cdot \text{m/c};$$

при v = 0.2 м/с имеем [p] = 9 МПа; [pv] = 1.8 МПа·м/с.

Для вычисленной выше скорости скольжения v = 0.48 м/с находим методом интерполирования значение [pv] = 1.54 МПа·м/с, следовательно,

$$[p] = \frac{[pv]}{v} = \frac{1,54}{0,48} = 3,2 \text{ M}\Pi a.$$

Условия (9.16) и (9.17) выполнены.

Осевая сила $F_a=4,4$ кН воспринимается торцовой поверхностью вкладыща. Принимаем толщину вкладыща $s=0,03d+(1\div 3)$ мм = $0,03\cdot 80+2,6$ мм = 5 мм; высота буртика $H=1,2s+(3\div 5)$ мм = $1,2\cdot 5+4=10$ мм.

Наружный диаметр буртика $D = d + 2H = 80 + 2 \cdot 10 = 100$ мм.

Внутренний диаметр кольцевой торцовой поверхности вкладыша определяем с учетом радиуса галтели $\rho=2$ мм $d_0=d+2\rho=80+2\cdot 2=84$ мм.

Опорная поверхность торца $A_{\rm r} = 0.25\pi \, (D^2 - d_0^2) = 0.25 \times 3.14 \, (100^2 - 84^2) = 2300 \, {\rm Mm}^2$; среднее давление

$$p_{\rm T} = \frac{F_a}{A_{\rm T}} = \frac{4.4 \cdot 10^3}{2300} = 1.92 \text{ M}\Pi\text{a}.$$

Приведенный радиус торцовой поверхности по формуле (9.18)

$$R_{\rm np} = 0.33 \, \frac{D^3 - d_0^3}{D^2 - d_0^2} = 0.33 \, \frac{100^3 - 84^3}{100^2 - 84^2} = 45 \, \text{ MM}.$$

Скорость скольжения на приведенном радиусе

$$v = \omega R_{\text{np}} = 12 \cdot 45 \cdot 10^{-3} = 0.54 \text{ M/c}.$$

Следовательно,

$$pv = 1.92 \cdot 0.54 \approx 1.04 \text{ M}\Pi a \cdot m/c.$$

Методом интерполирования находим при $v_{\rm T}=0.54$ м/с значение [pv]=1.48 МПа·м/с, следовательно,

$$[p] = \frac{[pv]}{v_{\tau}} = \frac{1,48}{0.54} = 2,74 \text{ M}\Pi a.$$

Для торцовой поверхности вкладыща условия $\leq [p]$ и $pv \leq [pv]$ также выполнены.

КОНСТРУИРОВАНИЕ ДЕТАЛЕЙ РЕДУКТОРОВ

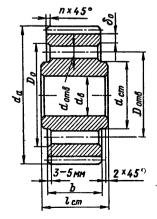
§ 10.1. КОНСТРУИРОВАНИЕ ЗУБЧАТЫХ И ЧЕРВЯЧНЫХ КОЛЕС И ЧЕРВЯКОВ

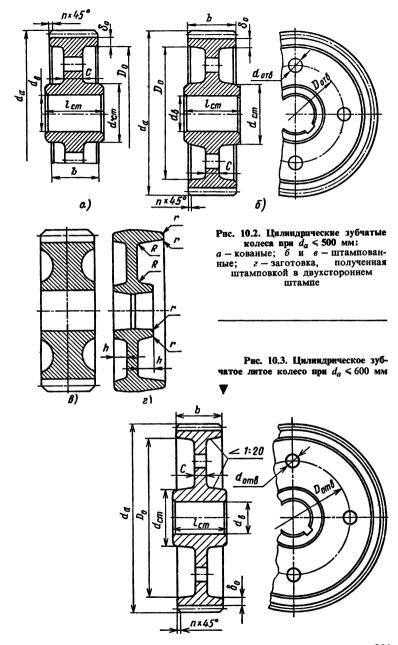
Конструкции цилиндрических и конических зубчатых колес представлены на рис. 10.1 – 10.5; рекомендации по определению размеров отдельных элементов колес даны в табл. 10.1.

Зубчатые колеса состоят из обода, несущего зубья; ступицы, насаживаемой на вал, и диска, соединяющего обод со ступицей.

Зубчатые цилиндрические стальные колеса малых диаметров выполняют обычно коваными (см. рис. 10.1); при диаметрах до 500 мм — коваными или штампованными (см. рис. 10.2); при больших диаметрах — литыми с диском (см. рис. 10.3) или со спицами.

Штампованные заготовки по форме соответствуют готовым деталям; механическая обработка нерабочих поверхностей не требуется.


Для заполнения полостей штампа разогретым металлом и выемки заготовки полость должна иметь уклоны не менее 5° (см. рис. $10.2, \epsilon$) и радиусы закруглений $r \approx 0.05h + 1$ мм;


$$R \approx 2.5r + 1$$
 MM.

Зубчатые конические стальные колеса при диаметрах до 500 мм изготовляют ковкой или штамповкой (см. рис. 10.4); при диаметрах, больших 300 мм, конические колеса можно изготовлять либо из стального, либо из чугунного литья (см. рис. 10.5).

Шестерни конструируют в двух исполнениях: отдельно от вала (насадная шестерня) и за одно целое с валом (вал-шестерня; рис. 10.6).

Рис. 10.1. Цилиндрическое зубчатое кованое колесо при $d_a \le 200$ мм

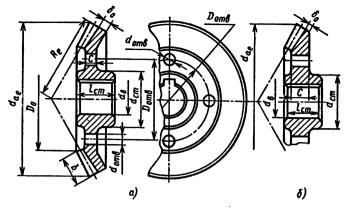


Рис. 10.4. Конические зубчатые колеса при $d_{ae} <$ 500 мм: a- штампованные; $\delta-$ кованые

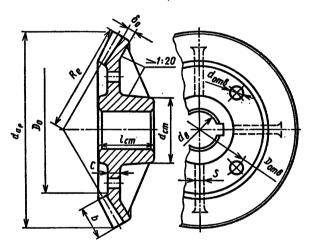


Рис. 10.5. Коническое зубчатое литое колесо прп $d_{ae} > 300\,$ мм

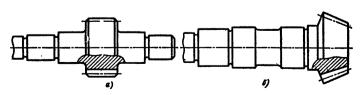


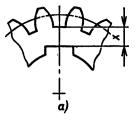
Рис. 10.6. Валы-шестерии: a — цилиндрическая шестерия; δ — коническая

10.1. Определение размеров зубчатых металлических колес (см. рис. 10.1-10.5)

Параметры	Формула
Диаметр ступицы стальных колес То же, чугунных колес Длина ступицы Толщина обода цилиндрических колес То же, конических колес То же, штампованных колес То же, штампованных колес » литых колес » конических колес Диаметр центровой окружности Диаметр отверстий (в шестернях малых размеров отверстия не делают) Толщина ребер Фаска	$ d_{\text{CT}} \approx 1.8 d_{\text{B}} $ $ l_{\text{CT}} \approx (1.2 \div 1.5) d_{\text{B}}^* $ $ \delta_0 = (2.5 \div 4.0) m_n; $ $ \delta_0 = (3 \div 4) m, $ $ C = 0.3 b $ $ C = (0.2 \div 0.3) b $ $ C = 0.2 b $ $ C = (0.1 \div 0.17) R_{\text{e}} $ $ D_{\text{OTB}} = 0.5 (D_0 + d_{\text{CT}}) $

^{*} В массовом производстве цилиндрические колеса при нарезании зубъев обрабатывают «пакетами» по два и более. При этом ступица не должна выступать за торец венца, т. е. $l_{\rm cr} \le b$.

Вал-шестерню выполняют в тех случаях, когда расстояние от впадины зуба до шпоночного паза оказывается меньше указанного на рис. 10.7.


Витки червяков выполняют в большинстве случаев за одно целое с валом (рис. 10.8): фрезерованием при $d_0 > d_{f1}$ или нарезанием на токарных станках при $d_0 < d_{f1}$, чем обеспечивается свободный выход резца.

Червячные колеса изготовляют обычно составными: венец — бронзовый, центр — чугунный, чугун марки СЧ 15. Венцы соединяют с центрами либо посадкой с натягом (рис. 10.9, a u b), либо болтами, поставленными без зазора в отверстия из-под развертки (рис. 10.9, a).

Обод червячного колеса, выполненного целиком из чугуна (без насадного венца), показан на рис. 10.9, г.

Натяг бронзового венца на чугунном центре во время

Обозначения: $d_{\rm B}$ — диаметр вала; m_n — модуль нормальный; m — средний окружной модуль; b — ширина венца; R_e — внешнее конусное расстояние; D_0 — внутренний диаметр обода.

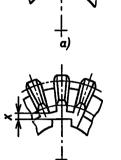


Рис. 10.7. Минимальное расстояние x от впадины зуба до шпоночной канавки: a — для щилиндрических колес x > 2.5 m_t ; b — для конических колес x > 1.6 m_{te}

работы червячного колеса уменьшается, так как коэффициент линейного расширения бронзы больше, чем чугуна. Во избежание смещения венца относительно центра на стыке устанавливают 4-6 винтов (рис. 10.9, a и d), их проверяют на срез $\left[\tau_{cp}\right] = 0.25\sigma_{T}$. Стенки отверстий проверяют на смятие: для бронзы $\left[\sigma_{cM}\right] = 0.3\sigma_{T}$ и для чугуна $\left[\sigma_{CM}\right] = 0.4\sigma_{H}$.

Соединение венца с центром можно осуществить отливкой бронзового венца в литейную форму, в которую заранее устанавливают чугунный центр. Во избежание проворота венца на боковых поверхностях центра делают пазы, заполняемые металлом венца при отливке (рис. 10.10).

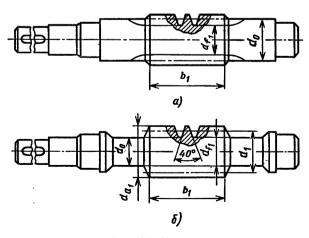


Рис. 10.8. Червяки: a-c фрезерованными витками; b-c витками, нарезанными на токарном станке

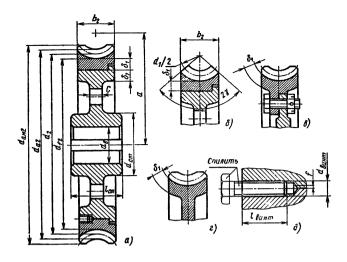


Рис. 10.9. Червячные колеса: а и 6 — с напрессованным венцом; e — с привернутым венцом; e — цельнолитое; d — с фиксацией напрессованного венца винтом: C=0.25 b_2 ; $\delta_1=\delta_2=2m$; $d_{\rm CT}=(1.6\div1.8)~d_{\rm B};~l_{\rm CT}=(1.2\div1.7)~d_{\rm B};~d_{\rm BHHT}=(1.2\div1.4)~m;~l_{\rm BHHT}=(0.3\div0.4)~b_2;~f\approx0.2d_{\rm BHHT}$

На рис. 10.11 и 10.12 приведены рабочие чертежи цилиндрического и конического зубчатых колес в соответствии с требованиями ЕСКД (ГОСТ 2.403 – 75), а на рис. 10.13 и 10.14 рабочие чертежи червяка и червячного колеса (ГОСТ 2.406 – 76). Стандарт устанавливает обозначение архимедова червяка – ZA.

Об условных обозначениях допусков, посадок и шероховатости поверхностей см. в § 10.6 и 10.7.

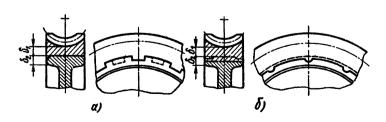


Рис. 10.10. Венцы, отлитые на чугунных центрах: a-c боковыми скосами; b-c прорезями. Размеры δ_1 и δ_2 см. рис. 10.9

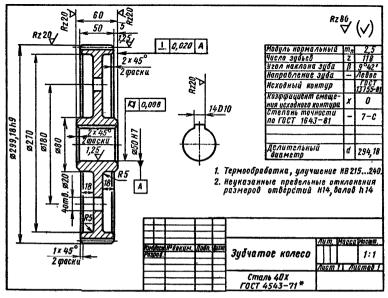


Рис. 10.11. Рабочий чертеж зубчатого цилиндрического колеса

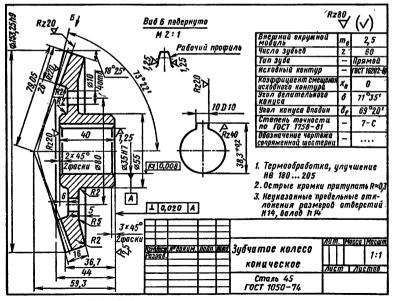


Рис. 10.12. Рабочий чертеж зубчатого конического колеса

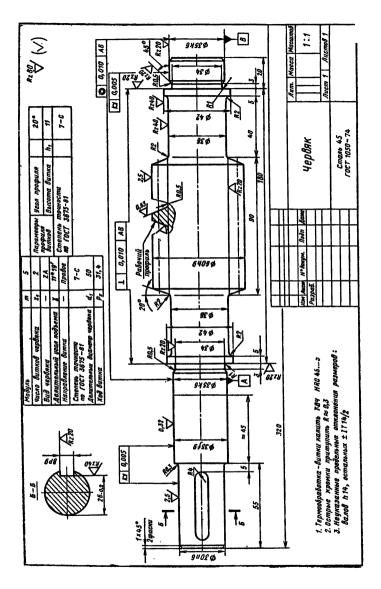


Рис. 10.13. Рабочий чертеж архимедова цилиндрического чер

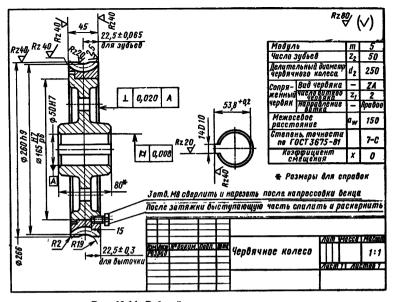


Рис. 10.14. Рабочий чертеж червячного колеса

§ 10.2. КОНСТРУИРОВАНИЕ КОРПУСОВ РЕДУКТОРОВ

В корпусе редуктора размещаются детали зубчатых и червячных передач. При его конструировании должны быть обеспечены прочность и жесткость, исключающие перекосы валов.

Для повышения жесткости служат ребра, располагаемые у приливов под подшипники. Корпус обычно выполняют разъемным, состоящим из основания (его иногда называют картером) и крышки (рис. 10.15). Плоскость разъема проходит через оси валов. В вертикальных цилиндрических редукторах разъемы делают по двум и даже по трем плоскостям. При конструировании червячных и легких зубчатых редукторов иногда применяют неразъемные корпуса со съемными крышками (рис. 10.16). На рис. 10.17 показаны основание и крышка литого корпуса червячного редуктора.

Материал корпуса обычно чугун СЧ 10 или СЧ 15. Сварные конструкции из листовой стали Ст2 и Ст3 применяют редко, главным образом для крупногабаритных редукторов индивидуального изготовления. Толщина стенок сварных корпусов на 20—30 % меньше, чем чугунных.

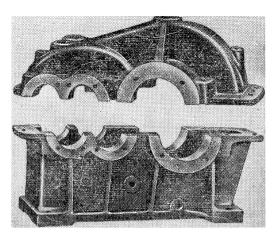
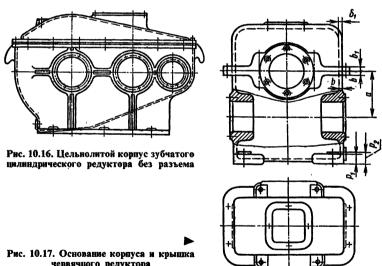
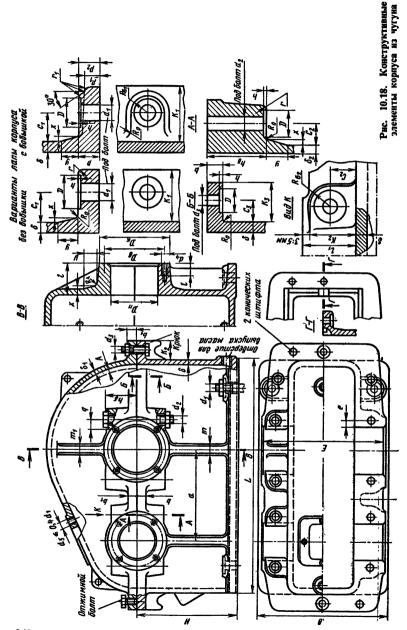




Рис. 10.15. Литые корпус и крышка двухступенчатого цилиндрического редуктора с разъемом по осям валов

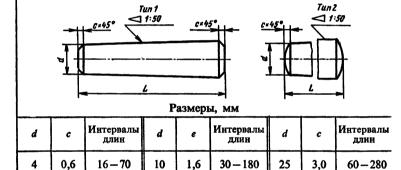
червячного редуктора

Ориентировочные размеры элементов литых корпусов (рис. 10.18) приведены в табл. 10.2 и 10.3. При конструировании таких корпусов следует придерживаться установленных литейных уклонов (табл. 10.4), радиусов галтелей и переходов. Радиусы галтелей выбирают из ряда: 1, 2, 3, 5, 8, 10, 15, 20, 25, 30, 40 мм.

10.2. Основные элементы корнуса из чугуна (см. рис. 10.18)

Параметры	Ориентировочные соотношения (размеры, мм)			
Толщина стенки корпуса и крышки редуктора: одноступенчатого цилиндрического одноступенчатого конического одноступенчатого червячного двухступенчатого Толщина верхнего пояса (фланца) корпуса	Во всех случаях $\delta \ge 8$ мм μ $\delta_1 \ge 8$ мм $\delta_1 \ge 8$ мм $\delta_1 \ge 8$ мм $\delta_1 \ge 8$ мм $\delta_1 \ge 8$ мм $\delta_1 \ge 8$ мм $\delta_1 \ge 8$ мм $\delta_1 \ge 8$ мм $\delta_1 \ge 8$ мм $\delta_1 \ge 8$ мм $\delta_1 \ge 8$ мм $\delta_1 \ge 8$ мм $\delta_1 \ge 8$ мм $\delta_2 \ge 8$ мм $\delta_1 \ge 8$ мм $\delta_2 \ge 8$ мм $\delta_1 \ge 8$ мм $\delta_2 \ge 8$ мм $\delta_3 \ge 8$ мм $\delta_4 \ge 8$ мм $\delta_1 \ge 8$ мм $\delta_2 \ge 8$ мм $\delta_3 \ge 8$ мм $\delta_4 \ge 8$ мм $\delta_1 \ge 8$ мм $\delta_2 \ge 8$ мм $\delta_3 \ge 8$ мм $\delta_4 \ge 8$ м			
Толщина нижнего пояса (флан- ца) крышки корпуса	$b_1 = 1,5\delta_1$			
Толщина-нижнего пояса корпуса; без бобышки при наличии бобышки Толщина ребер основания корпуса	$p = 2,35 \delta$ $p_1 = 1,5\delta$; $p_2 = (2,25 \div 2,75)\delta$ $m = (0,85 \div 1)\delta$			
Толщина ребер крышки	$m_1 = (0.85 \div 1)\delta_1$			
Диаметр фундаментных болтов (их число > 4)	$d_1 = (0.03 \div 0.036)a_{\tau} + 12;$ $d_1 = 0.072R_e + 12$			
Диаметр болтов: у подшипников соединяющих основание корпуса с крышкой				
Размеры, определяющие положение болтов d_2	$e \approx (1 \div 1,2) d_2; q \geqslant 0,5 d_2 + d_4;$ d_4 — крепление крышки подшип ника			
Высота бобышки h_6 под болт d_2	h ₆ выбирают конструктивно так, чтобы образовалась опорная поверхность под головку болта и гайку. Желательно у всех бобышек иметь одинаковую высоту h ₆			

10.3. Дополнительные элементы корпуса из чугуна (см. рис. 10.18)


L										
Параметры					Ориентировочные соотношения (размеры, мм)					
	Диаметр отверстия в гнез- де				$D_{\rm n}$ — по наружному диаметру подшипника или стакана					
Гнездо под под- шип- ник	Винты крепления крышки подшипника d_4 Число винтов n (предпочтительны врезные крышки без винтов)				M8-M12 4-6					
Диаметр гнезда				a		$D_{\kappa} = D_2 + (2 \div 5)$ $D_2 -$ диаметр фланца к подшипника			-	ышки
	Длина гнезда				$l^* = \delta + c_2 + R_6 + (3 \div 5);$ $R_6 \ge 1, 1 d_2$					
Размеры штифта					$d_{ m m}pprox d_3$ (размеры по табл. 10.5) $l_{ m m}=b+b_1+5$					
Наименьший зазор между наружной поверхностью колеса и стенкой корпуса: по диаметру по торцам				$A \approx (1 \div 1,2) \delta$ $A_1 \approx A$ (на чертеже не показан)						
Параметры					Болты		•			
парамет	/DI	М6	M8	M10	M12	M16	M20	M24	M27	M30
K _i c _i		22 12	24 13	28 16	33 18	39 21	48 25	54 34	58 36	65 50

^{*} Для удобства механической обработки торцов бобышек и проверки перекоса осей отверстий размер E обычно принимают одинаковым для всех опор, поэтому и размер l принимают для всех гнезд одинаковым.

10.4. Рекомендуемые литейные уклоны

a:h ∫	Уклон a:h	Вели- чина угла β	Рекомендуемое применение		
	1:5	11°30′		h ≤ 25 mm	
	1:10 1:20	5°30′ 3°	Для стали	<i>h</i> = 25 ÷ ÷500 мм	
	1:50	1°		h > 500 мм	
	1 : 100	30′	Для цвет- ных ме- таллов	_	

10.5. Штифты конические (по ГОСТ 3129-70)

Примечания: 1. Ряд длин L 16, 20, 25, 30, 36, 40, 45, 50, 55, 60, 65, 70, 80, 90, 100, 110, 120, 140, 160, 180, 200, 220, 250, 280 мм, 2. Материал (рекомендуемый) — сталь 45, 15, A12.

1.6

2,0

2.5

36 - 220

40 - 280

50 - 280

32

40

50

4.0

5,0

6,3

80 - 280

100 - 280

120 - 280

5

6

8.0

1.0

1,2

16 - 90

20 - 110

25 - 140

12

16

20

Основание корпуса и крышку фиксируют относительно друг друга двумя коническими штифтами (табл. 10.5), устанавливаемыми без зазора до расточки гнезд под подшипники. Основание и крышку корпуса соединяют болтами d_3 для обеспечения герметичности. Ориентировочно принимают расстояние между осями болтов $\sim (10 \div 15) d_3$.

Для предотвращения протекания масла плоскости разъема смазывают спиртовым лаком или жидким стеклом. Ставить

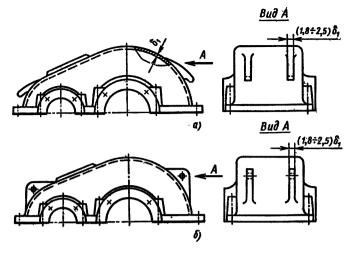


Рис. 10.19. Крынки корпуса редуктора: a-c крюками; $\delta-c$ петлями

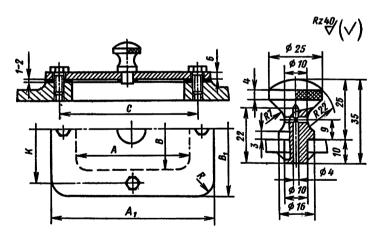
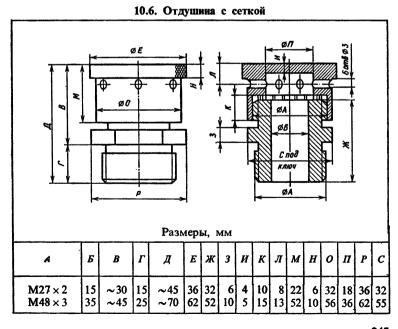
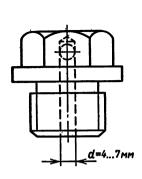


Рис. 10.20. Крышка смотрового отверстия (размеры, мм):


A	Ŗ	A	B ₁	с	K	R	Размер винта	Число винтов
100	75	150	120	125	100	12	M8 × 22	4
150	100	190	140	175	120	12	M8 × 22	4
200	150	250	200	230	180	15	M10 × 22	6

прокладку между основанием и крышкой нельзя, так как при затяжке болтов она деформируется, и посадка подшипников нарушается.


Для захватывания редуктора при подъеме делают под фланцем основания приливы в виде крюков. Для снятия крышки делают крюки или петли на ней (рис. 10.19).

Для заливки масла и осмотра в крышке корпуса имеется окно, закрываемое крышкой (рис. 10.20). В редукторах с большим выделением тепла (червячных) предусматривают отдушину, соединяющую внутреннюю полость редуктора с атмосферой. Установка отдушины повышает надежность уплотнений (при отсутствии отдушины незначительное повышение давления внутри корпуса редуктора может привести к выдавливанию смазки через уплотнения). Простой отдушиной может быть ручка крышки смотрового отверстия (см. рис. 10.20) или пробка с отверстиями (рис. 10.21). Отдушина с сетчатым фильтром и ее размеры даны в табл. 10.6.

Для удаления загрязненного масла и для промывки редуктора в нижней части корпуса делают отверстие под пробку с цилиндрической или конической резьбой (табл. 10.7).

245

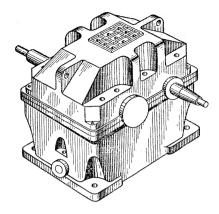
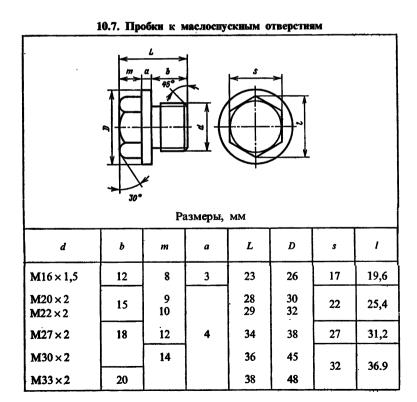



Рис. 10.22. Корпус редуктора с уменьшенным числом выступающих элементов

Под цилиндрическую пробку ставят уплотняющую прокладку из кожи, маслостойкой резины, алюминия или меди. Надежнее уплотняет коническая резьба.

Маслоспускное отверстие выполняют на уровне днища или несколько ниже его. Желательно, чтобы днище имело наклон $1-2^{\circ}$ в сторону маслоспускного отверстия.

Для облегчения отделения крышки от основания корпуса при разборке на поясе крышки устанавливают два отжимных болта (см. рис. 10.18).

Подшипники закрывают крышками глухими и сквозными, через которые проходят концы валов. По конструкции различают крышки врезные и на винтах (см. гл. IX); материалом служит обычно чугунное литье СЧ 10 или СЧ 15.

Редуктор и электродвигатель обычно устанавливают на литой плите или на сварной раме. Диаметр фундаментных болтов и их число выбирают по табл. 10.3.

При конструировании корпусов редукторов в некоторых случаях стремятся к устранению выступающих элементов с наружных поверхностей (рис. 10.22). Бобышки подшипниковых гнезд убирают внутрь корпуса; крепежные болты размещают в нишах, располагая их вдоль длинных сторон (там, где есть бобышки). Крышки подшипниковых гнезд врезные.

§ 10.3. УСТАНОВОЧНЫЕ РАМЫ И ПЛИТЫ

При монтаже следует соблюдать определенные требования точности положения одной сборочной единицы относительно другой, например электродвигателя и редуктора. Для обеспечения этого требования механизмы привода устанавливают на сварных рамах или литых плитах. Рамы выполняют сварными из листовои стали (рис. 10.23) и профильного проката — уголков или швеллеров (рис. 10.24). На рис. 10.25 показана литая плита из серого чугуна СЧ 15.

При выполнении сварных рам из швеллеров их располагают для удобства постановки болтов полками наружу. На внутреннюю поверхность полки накладывают косые шайбы (по ГОСТ 10906—78) или наваривают косые накладки, которые выравнивают опорную поверхность под головки болтов (рис. 10.26 и 10.27).

Опорные поверхности — платики, на которые устанавливают редукторы и электродвигатели, создаются привариванием узких полосок стали высотой $5-6\,$ мм.

В случаях, когда болт проходит через обе полки швеллера, жесткость увеличивают ребрами, угольниками (рис. 10.28, a) или трубками (рис. 10.28, b).

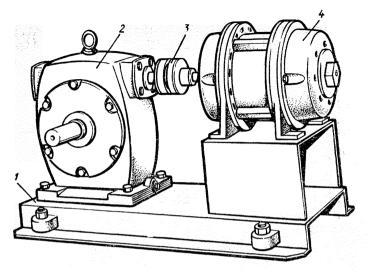


Рис. 10.23. Установка привода на сварной раме из листовой стали: I — сварная рама; 2 — червячный редуктор; 3 — муфта; 4 — электродвигатель

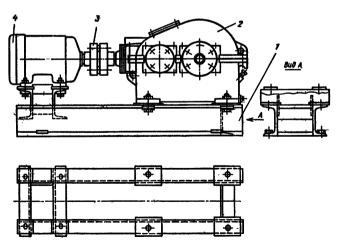


Рис. 10.24. Установка привода на сварнон раме из швеллеров: 1 – сварная рама: 2 – коническо-цилиндрический редуктор; 3 – муфта; 4 – электродвигатель

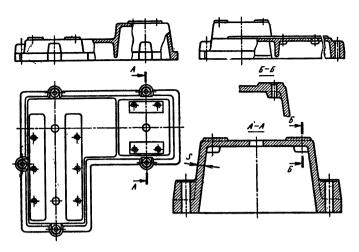


Рис. 10.25. Литая установочная плита

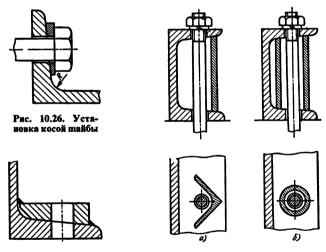


Рис. 10.27. Косая Рис. 10.28. Увеличение жестконакладка сти полок швеллера

Так как рама при сварке коробится, то все опорные поверхности, на которые устанавливают механизмы привода, обрабатывают после сварки.

Литые плиты дороже сварных рам и поэтому распространены меньше. Для облегчения плит без ослабления жесткости их делают пустотелыми и усиливают ребрами. Толщину

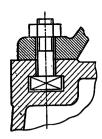


Рис. 10.29. Крепление сборочпой единицы к плите болтами

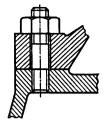


Рис. 10.30. Крепление сборочной единицы к плите шпильками

стенок S чугунной плиты рекомендуют определять ориентировочно в зависимости от габарита отливки, обозначаемого

$$N=\frac{2l+b+h}{3},$$

где l — длина, b — ширина, h — высота плиты, м.

Опорные поверхности плиты должны обрабатываться, и их следует отделять от черных (необрабатываемых) поверхностей. Поэтому в этих местах толщину стенки надо увеличивать, предусматривая необходимые приливы, аналогичные платикам в сварных рамах.

Сборочные единицы крепят к плите болтами (рис. 10.29) или шпильками (рис. 10.30). Крепление шпильками затрудняет сборку, так как требует, чтобы редуктор и электродвигатель устанавливались в сборе с муфтой. Крепление болтами позволяет устанавливать редуктор и электродвигатель последовательно.

§ 10.4. СМАЗЫВАНИЕ РЕДУКТОРОВ

Смазывание зубчатых и червячных зацеплений и подшипников* уменьшает потери на трение, предотвращает повышенный износ и нагрев деталей, а также предохраняет детали от коррозии. Снижение потерь на трение обеспечивает повышение КПД редуктора.

По способу подвода смазочного материала к зацеплению различают картерное и циркуляционное смазывание.

Картерное смазывание осуществляется окунанием зубчатых и червячных колес (или червяков) в масло, заливаемое внутрь корпуса. Это смазывание применяют при окружных скоростях

^{*} Смазывание подшипников в редукторах рассмотрено в гл. ІХ.

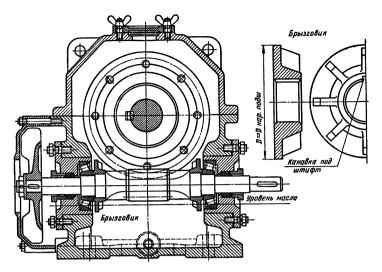


Рис. 10.31. Редуктор с брызговиками

в зацеплении зубчатых передач до $v \le 12$ м/с, в зацеплении червячных передач при окружной скорости червяка до $v \le 10$ м/с. При большей скорости масло сбрасывается центробежной силой.

Зубчатые и червячные колеса погружают в масло на высоту зуба, а червяк (расположенный внизу) — на высоту витка, но не выше центра нижнего тела качения подшипника. Если условия нормальной работы подшипников не позволяют погружать червяк в масло, то применяют брызговики, забрасывающие масло на червячное колесо (рис. 10.31); в реверсивных передачах устанавливают два брызговика.

Зубья конических колес погружают в масло на всю длину. В многоступенчатых редукторах часто не удается погружать зубья всех колес в масло, так как для этого необходим очень высокий уровень масла, что может повлечь слишком большое погружение колеса тихоходной ступени и даже подшипников в масло. В этих случаях применяют смазочные шестерни (рис. 10.32) или другие устройства. При $v \leqslant 0.5$ м/с колесо погружают в масло до $^{1}/_{6}$ его радиуса. При смазывании окунанием объем масляной ванны редуктора принимают из расчета $\sim 0.5-0.8$ л масла на 1 кВт передаваемой мощности.

В косозубых передачах масло выжимается зубьями в одну сторону, а в червячных редукторах червяк, погруженный в

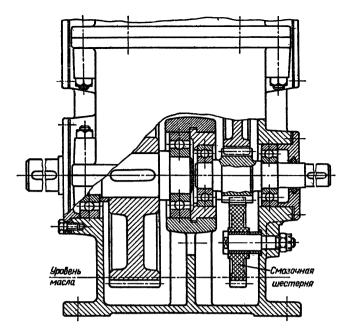


Рис. 10.32. Смазочная шестерня из текстолита

масло, гонит масло к подшипнику. В том и другом случае для предотвращения обильного забрасывания масла в подшипники устанавливают маслозащитные кольца (см. гл. IX).

Циркуляционное смазывание применяют при окружной скорости $v \ge 8$ м/с. Масло из картера или бака подается насосом в места смазывания по трубопроводу через сопла (рис. 10.33, a) или при широких колесах через коллекторы

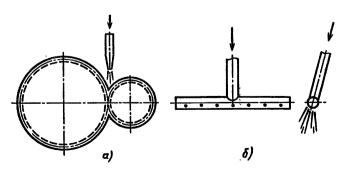


Рис. 10.33. Циркуляционное смазывание

(рис. 10.33, б). Возможна подача масла от централизованной смазочной системы, обслуживающей несколько агрегатов.

Назначение сорта масла зависит от контактного давления в зубьях и от окружной скорости колеса. С увеличением контактного давления масло должно обладать большей вяз-

10.8. Рекомендуемые значения вязкости масел для смазывания зубчатых передач при 50 °C

Контактные напряжения σ_H ,	Кинематическая	визкость, $10^{-6} \cdot \text{м}^2/$ скорости v , м/с	с, при окружной
МПа	до 2	св. 2 до 5	св. 5
До 600 Св. 600 до 1000 » 1000 » 1200	34 60 70	28 50 60	22 40 50

10.9. Рекомендуемые значения вязкости масел для смазывания червячных передач при 100°C

Контактные напряжения о _н ,		в вязкость, $10^{-6} \cdot \text{м}^2/\text{скольжения, } v_s$, м/с	с, при скорости
МПа	до 2	св. 2 до 5	св. 5
До 200 Св. 200 до 250 » 250 » 300	25 32 40	20 25 30	15 18 23

10.10. Масла, применяемые для смазывания зубчатых п червячных передач

Сорт масла	Марка	Кинематическая вязкость, $10^{-6} \cdot \text{м}^2/c$
Индустриальное	И-12A И-20A И-25A И-30A И-40A И-50A И-70A И-100A	10-14 17-23 24-27 28-33 35-45 47-55 65-75 90-118
Авиационное	MC-14 M ⊈ -22 MC-20	14 22 20,5 } при 100 °C
Цилиндровое	52	44-59 при 100°C

костью; с увеличением окружной скорости вязкость масла должна быть меньше.

Выбор сорта масла начинают с определения необходимой кинематической вязкости масла: для зубчатых передач — в зависимости от окружной скорости (табл. 10.8), для червячных передач — от скорости скольжения (табл. 10.9). Затем по найденному значению вязкости выбирают соответствующее масло по табл. 10.10.

Контроль уровня масла, находящегося в корпусе редуктора, производят с помощью маслоуказателей.

Простейший жезловый маслоуказатель показан на рис. 10.34; для возможности контроля уровня масла во время работы редуктора применяют закрытые жезловые маслоуказатели (рис. 10.35).

Фонарный маслоуказатель и его размеры приведены на рис. 10.36. Через нижнее отверстие в стенке корпуса масло проходит в полость маслоуказателя; через верхнее отверстие маслоуказатель сообщается с воздухом в корпусе редуктора.

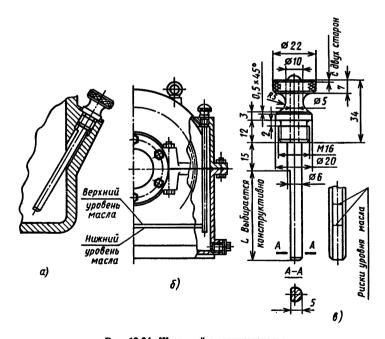


Рис. 10.34. Жезловый маслоуказатель: a — установка в нижней части корпуса редуктора; δ — установка в крышке корпуса; ϵ — примерные размеры маслоуказателя для небольших редукторов

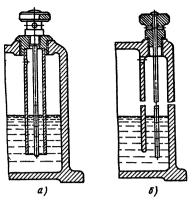


Рис. 10.35. Жезловые маслоуказатели закрытые: $a - \mathbf{B}$ трубке; $6 - \mathbf{3a}$ перегородкой

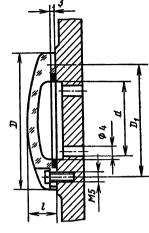


Рис. 10.36. Фонарный маслоуказатель (размеры, мм):

d	D	D_1	l
32	60	49	12
50	80	69	16

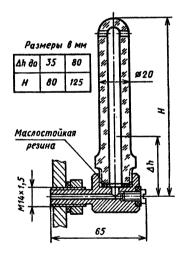


Рис. 10.37. Маслоуказатель с трубкой из оргстекла

На рис. 10.37 показан трубчатый маслоуказатель, сделанный по принципу сообщающихся сосудов.

§ 10.5. ТЕПЛОВОЙ РАСЧЕТ РЕДУКТОРОВ

При работе редуктора потери мощности, вызванные трением в зацеплении и в подшипниках, перемешиванием и разбрызгиванием масла, приводят к нагреву деталей редуктора и масла. При нагреве вязкость масла резко падает, что приводит к нарушению режима смазывания. Нормальная работа редуктора

будет обеспечена, если температура масла не превысит допускаемой

Рассматриваемый ниже метод расчета обязателен для червячных и зубчато-червячных редукторов. Для зубчатых редукторов малой и средней мощности в нем нет необходимости, так как КПД их высок и тепловыделение невелико.

При установившемся режиме работы редуктора все выделяющееся тепло отдается через его стенки окружающему воздуху; этому соответствует определенный перепад температур между маслом и окружающим воздухом. Условие работы редуктора без перегрева

$$\Delta t = t_{\rm M} - t_{\rm B} = \frac{P_{\rm v}(1-\eta)}{k_t A} \leqslant [\Delta t], \qquad (10.1)$$

где $t_{\rm M}$ — температура масла, °C; $t_{\rm B}$ — температура окружающего воздуха, °C (принимают обычно $t_{\rm B}=20$ °C); $P_{\rm q}$ — подводимая мощность (или мощность на валу червяка), Вт; η — КПД редуктора (см. гл. I); k_t — коэффициент теплопередачи $[k_t\approx 11\div 17~{\rm Br/(m^2\cdot °C)}]$; A — площадь теплоотдающей поверхности корпуса редуктора, м² (при подсчете A площадь днища не учитывают, если оно не обдувается воздухом); $[\Delta t]=40\div 60~{\rm °C}$ — допускаемый перепад температур между маслом и окружающим воздухом (меньшие значения — для редукторов с верхним расположением червяка).

Если $\Delta t > [\Delta t]$, то следует увеличить теплоотдающую поверхность ребрами (рис 10.38 и 10.39), вводя в расчет 50% их

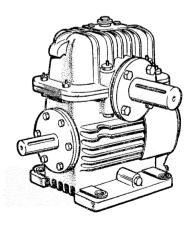


Рис. 10.38. Червячный редуктор с охлаждающими ребрами

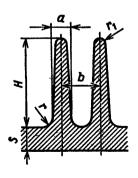


Рис. 10.39. Профиль охлаждающих ребер: $H = (4 \div 5)\delta; \quad a = \delta; \quad r = 0.5\delta; \quad r_1 = 0.25\delta; \quad b = 2\delta$

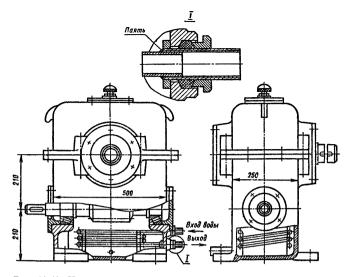


Рис. 10.40. Червячный редуктор со змеевиком для охлаждения масла

поверхности; можно уменьшить Δt , увеличив k_t . Для этого применяют обдув корпуса (см. рис. 10.31), повышающий k_t на 50-100%. Если оба указанных способа оказываются недостаточно эффективными, следует установить в масляной ванне змеевик, по которому пропускают охлаждающую воду (рис. 10.40).

§ 10.6. ДОПУСКИ И ПОСАДКИ ДЕТАЛЕЙ ПЕРЕДАЧ

Единая система допусков и посадок — ЕСДП (ГОСТ 25346—82 и ГОСТ 25347—82) регламентирована стандартами СЭВ и в основном соответствует требованиям Международной организации по стандартизации — ИСО.

Основные термины и обозначения ЕСДП приведены ниже. Номинальным размером называют размер изделия, полученный по расчету или выбранный по конструктивным соображениям. Изготовленные изделия всегда имеют некоторые отклонения от номинальных размеров.

Для того чтобы изделие отвечало своему целевому назначению, его размеры должны выдерживаться между двумя допустимыми предельным и размерами, разность которых образует допуск. Зону между наибольшим и наименьшим предельными размерами называют полем допуска

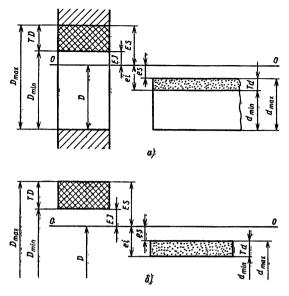


Рис. 10.41. Поля допусков отверстия и вала: a — отверстие и вал с полями допусков; δ — упрощенная схема полей допусков: D_{\max} и D_{\min} — наибольший и наименьший предельные размеры отверстия; TD — допуск отверстия; d_{\max} и d_{\min} — наибольший и наименьший предельные размеры вала; Td — допуск вала; 00 — нулевая линия, положение которой соответствует номинальному размеру; ES и es — верхние отклонения отверстия и вала; El и ei — нижине отклонения отверстия и вала

На рис. 10.41 показан графический способ изображения допусков и отклонений (поле допуска отверстия — охватывающая деталь — заштриховано клеткой, а поле допуска вала — охватываемая деталь — заштриховано точками). На рис. 10.41, a изображены отверстие и вал и их поля допусков; на рис. 10.41, 6 — только поля допусков (упрощенная схема).

К различным соединениям предъявляют неодинаковые требования в отношении точности. Поэтому система домусков содержит 19 квалитетов: 01, 0, 1, 2, 3,...,17, расположенных в порядке убывания точности. Характер соединения деталей называют посадку ой. Характеризует посадку разность размеров деталей до сборки.

Посадки могут обеспечивать в соединении зазор S или на тяг N. Переходные посадки могут иметь или зазор, или натяг; они характеризуются наибольшим зазором S_{\max} и наибольшим натягом N_{\max} .

Разнообразные посадки удобно получать, изменяя положение поля допуска или вала, или отверстия, оставляя для всех

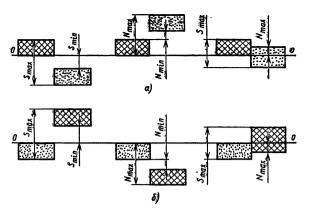


Рис. 10.42. Поля допусков

посадок поле допуска одной детали неизменным (рис. 10.42). Деталь, у которой положение поля допуска остается без изменения и не зависит от вида посадки, называют основной деталью системы. Если этой деталью является отверстие, то соединение выполнено в системе отверсти я (рис. 10.42, a); если основной деталью является вал — в системе вала (рис. 10.42, b). У основного отверстия нижнее отклонение EJ = 0. После допуска направлено в сторону увеличения номинального размера. У основного вала верхнее отклонение es = 0. Поле допуска направлено в сторону уменьшения номинального размера.

Основные отклонения обозначают буквами латинского алфавита: для отверстий прописными A, B, C и т. д.; для валов строчными a, b, c и т. д. Преимущественно назначают посадки в системе отверстия с основным отверстием H, у которого EJ=0.

Для посадок с зазором рекомендуют применять неосновные валы f, g, h; для переходных посадок $-j_s$, k, m, n; для посадок c натягом -p, r, s.

Посадки обозначают комбинациями условных обозначений полей допусков. Например, $\emptyset \frac{H7}{f7}$ означает соединение двух деталей с номинальным диаметром 35 мм, обработанных по полям допусков H7 и f7, в системе отверстия. Цифры означают номер квалитета. Та же посадка в системе вала будет иметь обозначение \emptyset 35 $\frac{F7}{h7}$.

При назначении посадок следует пользоваться следующими рекомендациями: при неодинаковых допусках отверстия и вала больший допуск должен быть у отверстия (например, $\frac{H7}{m6}$); допуски отверстия и вала могут отличаться не более чем на 2 квалитета.

В табл. 10.11 и 10.12 приведены отклонения основных отверстий и отклонения валов для наиболее распространенных квалитетов и размеров от 18 до 180 мм.

10.11. Предельные отклонения основных отверстий (по ГОСТ 25347-82)

Интервал размеров, мм	Поля	допусков и преде	льные
размеров, мм	Н6	H7	H8
Св. 18 до 30	+13 0	+21 0	+33
Св. 30 до 50	+16 0	+25 0	+39 0
Св. 50 до 80	+ 19 0	+30 0	+46 0
Св. 80 до 120	+22	+35	+54 0
Св. 120 до 180	+25	+40	+63 0

Рекомендуемые посадки основных деталей редукторов, шкивов, звездочек и муфт см. в табл. 10.13.

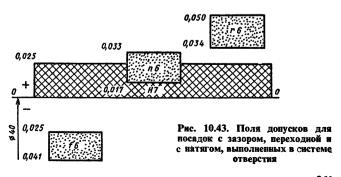
Пример. Построить схему полей допусков для посадок: а) с зазором \emptyset 40 $\frac{H7}{f6}$; б) переходной \emptyset 40 $\frac{H7}{n6}$; в) с натягом \emptyset 40 $\frac{H7}{r6}$.

Решение.

- 1. Из табл. 10.11 выписываем для основного отверстия H7: верхнее отклонение для \varnothing 40 ES=+25 мкм, нижнее отклонение для \varnothing 40 EJ=0.
- 2. Из табл. 10:12 выписываем значения отклонений валов, мкм. для Ø40:

Отклонения	<i>f</i> 6	n6	r6
Верхние	-25	+33	+ 50
Нижние	41	+17	+34

3. Предельные размеры, мм:


Отверстие	<i>H</i> 7
D_{\max}	40,025
D _{min}	40,000

	Валы	f6	n6	r6
	d_{\max}	39,975	40,033	40,050
-	d_{\min}	39,959	40,017	40,034

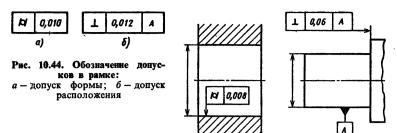
4. Зазоры и натяги, мм:

		Посадки	
Параметры	с зазором	переходная	с натягом
$S_{ m max}$	40,025 - 39,959 = = 0,066	40,025 - 40,017 = = 0,008	
S_{\min}	40,000 - 39,975 = = 0,025		-
$N_{ m max}$		40,000 - 40,033 = = -0,033	40,000 - 40,050 = = -0,050
$N_{ m min}$		-	40,025 - 40,034 = = -0,009

Схема полей допусков для этих трех посадок показана на рис. 10.43.

10.12. Предельные отклонения валов (мкм) для 6-го и 7-го квалитетов (по ГОСТ 25347-82)

								Пол	Поля допусков	CKOB							
интервал размеров, мм	<i>y</i>	98	94	j _s 6	k6	911	911	90	8	36	u	14	J _s 7	k7	Lm	<i>Lu</i>	57
Св. 18 до 30	-20 -33	_7 _20	0 -13	+6,5 -6,5	+15	+21 +8	+28 +15	+35	+41	+48 +35	-20 -41	0	+ 10 - 10	+23	+29 +8	+36 +15	+ 56 + 35
Св. 30 до 50	-25 -41	_9 _25	0 -16	+8,0 -8,0	+18	+25	+33	+42 +26	+ 50	+ 59	-25 -50	0 -25	+12 -12	+27	+34	+42 +17	+68
Св. 50 до 65	-30	- 10	0	+9,5	+21	+30	+39 +51		+ + 60 + 41	+72 +53	- 30	0	+15	+32	+41	+ 50	+83
Св. 65 до 80	- 49	- 29	-19	-9,5	+2	+11	+20 +32		+62	+78	- 60	-30	-15	+2	+11	+20	+ 89
Св. 80 до 100	-36	-12	0	0 +11	+25	+35	+45 +59		+73 +51	+93	-36	0	+17	+38	+ 48	+ 58	+106
Св. 100 до 120	-58	-34	-22	-11	+3	+13	+23 +37		+76 +54	+101 +79	-71	-35	-17	+3	+13	+23	+114
Св. 120 до 140	Ş	-	-	7 67			3		+88	+117	ç	C	5	?	44	7	+132
Св. 140 до 160	j .	1 4 6	•	0 + 12,5 + 20	•			8 :	+ 90 + 65	+125		5 9	}	, 5		40,	+140
Св. 160 до 180	8 I	ر د ا		C,21 - C2		CT + C+	 +	}	+ 93	+133	<u> </u>	1	N 1	<u>^</u>	<u> </u>	/ 7+	+148


10.13. Посадки основных деталей передач

Рекомендуемые посадки	Пример соединения
$\frac{H7}{r6}$; $\frac{H7}{s6}$	Зубчатые и червячные колеса на валы при тяжелых ударных нагрузках
$\frac{H7}{p6}$; $\frac{H7}{r6}$	Зубчатые и червячные колеса и зубчатые муфты на валы; венцы червячных колес на центр
$\frac{H7}{n6}$; $\frac{H7}{m6}$; $\frac{H7}{k6}$	Зубчатые колеса при частом демонтаже; шестерни на валах электродвигателей; муфты; мазеудерживающие кольца
$\frac{H7}{j_36}; \frac{H7}{h6}; \frac{H7}{h7}$	Стаканы под подшипники качения в корпус; распорные втулки
<u>H7</u> r6	Муфты при тяжелых ударных нагрузках
$\frac{H7}{j_s6}$; $\frac{H7}{h6}$	Шкивы и звездочки
H8 h8	Распорные кольца; сальники
Отклонение вала k6	Внутренние кольца подшипников качения на валы
Отклонение отверстия <i>H</i> 7	Наружные кольца подшипников качения в корпусе
Отклонение вала т6, т6	Внутренние кольца подшипников качения свыше 100 мм при тяжелых ударных нагрузках

Примечание. Для подшипников качения указаны отклонения валов и отверстий, а не обозначения полей допусков соединений, потому что подшипники являются готовыми изделнями, идущими на сборку без дополнительной обработки.

§ 10.7. ДОПУСКИ ФОРМЫ И РАСПОЛОЖЕНИЯ ПОВЕРХНОСТЕЙ. ШЕРОХОВАТОСТЬ ПОВЕРХНОСТИ

Погрешности формы и расположения поверхностей возникают при обработке деталей вследствие деформаций оборудования, инструмента и деталей, неоднородности материала заготовки и других причин.

Іопуски формы и расжения поверхностей ывают на чертежах вными обозначенияв соответствии с ТТ 2.308-79. Эти

Рис. 10.45. Соединение рамки с поверхностью: a — допуск пилиндричности формы; δ — допуск перпендикулярности поверхности

начения состоят из графического символа, обозначающего вид допуска (О – допуск круглости формы; О – допуск цилиндричности формы; // - допуск параллельности поверхностей; __ допуск перпендикулярности поверхностей; (6) допуск соосности поверхностей и др.), числового значения допуска в миллиметрах и буквенного обозначения базы или поверхности, с которой связан допуск расположения. На чертежах условное обозначение указывают в прямо-Ha рис. 10.44, а **УСЛОВНО УГОЛЬНЫХ** рамках. изображен допуск цилиндричности формы 0,010 мм, а на рис. 10.44, 6 – допуск перпендикулярности поверхности 0,012 мм относительно базы A.

С элементом, к которому относится допуск, рамку соединяют сплошной тонкой линией, оканчивающейся стрелкой; эту линию называют соединительной линией (рис. 10.45).

Базы обозначают зачерненным равносторонним треугольником, высота которого равна высоте размерных чисел. Если базой является поверхность, то основание треугольника располагают на контурной линии или на ее продолжении, а

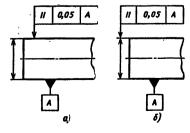


Рис. 10.46. Обозначение допуска по отношению к поверхности и по отношению к оси симметрии:
а — допуск—по отношению к поверхности; б — допуск по отношению к оси симметрии

соединительная линия не должна быть продолжением размерной линии. Если базой является ось или плоскость симметрии, то, наоборот, соединительная линия должна быть продолжением размерной (рис. 10.46).

10.14. Допуск формы цилиндрических поверхностей, мкм

Интервал		Квали	теты	
размеров, мм	6	7	8	9
Св. 10 до 18	3	5	8	12
» 18 » 30	4	6	10	16
» 30 » 50	5	8	12	20
» 50 » 80	6	10	16	25
» 80 » 120	6	10	16	25
» 120 » 180	8	12	20	30
» 180 » 250	8	12	20	30

Примечание. Числовые значения допуска должны быть округлены в ближайшую сторону до стандартных по ГОСТ 24643-81 из ряда, мкм: 1; 1,2; 1,6; 2; 2,5; 3; 4; 5; 6; 8; 10; 12; 16; -20; 25; 30; 40; 50; 60.

10.15. Допуски параллельности и перпендикулярности, мкм (по ГОСТ 24643-81)

	Интервал		Степень	точности	
p	азмеров, мм	6	7	8	9
Св.	16 до 25	6	10	16	25
»	25 » 40	8	12	20	30
»	40 » 63	10	16	2 5	40
»	63 » 100	12	20	30	50
»	100 » 160	16	25	40	60
»	160 » 250	20	30	50	. 80
»	250 » 400	25	40	60	100

10.16. Допуски соосности, мкм

Интервал	Подшипники	Зубчатые колеса	Червячные колеса	Подшипники шариковые
размеров, мм	конические роликовые		і степеней носи	радиальные и радиально- упорные
Св. 18 до 30 » 30 » 50 » 50 » 120 » 120 » 250 » 250 » 400	10 12 16 20 25	16 20 25 30 40	25 30 40 50 60	25 30 40 50 60

10.17. Назначение параметров шероховатости поверхностей дегалей машин

шер	аметры оховато- н, мкм	Обозначение шерохо-	Поверхность
Ra	Rz	ватости поверхности	
_	-	✓	Вид обработки поверхности не оговаривается
_	-	8	Черные, но ровные поверхности отливок, поковок, проката. Обработка без снятия стружки
_	320; 250 200; 160	Rz 320 ∕	Зачищенные поверхности отливок, по-ковок и пр.
_	160; 125 100; 80	Rz 160/ ✓	
	80; 63; 50; 40	RZ80 /	Поверхности отверстий из-под сверла, зенковок, фасок и пр. Нерабочие поверхности. Посадочные, нетрущиеся поверхности изделий не выше 12-го квалитета
	40; 32; 25; 20	Rz40 <i>y</i>	Точно прилегающие поверхности. Отверстия после черновой развертки. Поверхности под шабрение. Посадочные нетрущиеся поверхности изделий не выше 8-го квалитета
	20; 16; 12,5; 10	Rz 20 /	Отверстия в неподвижных соединениях всех квалитетов точности. Отверстия в трущихся соединениях 11-го и 12-го квалитетов. Боковые поверхности зубыев зубчатых колес 8-й и 9-й степеней точности
2,5; 2,0; 1,25	_	2,5,	Отверстия в трущихся соединениях 6—8-го квалитетов. Отверстия под под- шипники качения. Поверхности валов в трущихся соединениях 11-го и 12-го квалитетов. Поверхности червяков и хо- довых винтов. Боковые поверхности зубьев зубчатых колес 7-й степени точ- ности

шеро	ометры оховато- и, мкм	Обозначение шерохова-	Поверхность
Ra	Rz	тости поверхности	Повериноств
1,25; 1,00; 0,63	-	1,25/	Поверхности валов в трущихся соединениях 6-8-го квалитетов. Поверхности валов под подшипники качения. Боковые поверхности зубьев зубчатых колес 7-й и 6-й степени точности
0,63; 0,50; 0,32	-	0,63/	То же, для более ответственных поверхностей. Поверхности валов под подшипники качения
0,32; 0,25; 0,16	-	0,32	Весьма ответственные трущиеся поверхности валов либо других охватываемых деталей

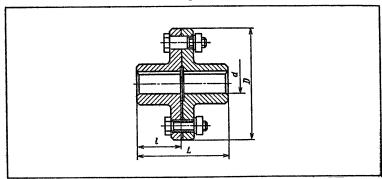
Примечание. Оценка шероховатости по ГОСТ 2789-73* производится несколькими параметрами. Основные параметры обозначены Ra и Rz; Ra— среднее арифметическое абсолютных значений отклонений профиля в пределах базовой длины; Rz— сумма средних арифметических абсолютных отклонений пяти наибольших максимумов и пяти наибольших минимумов профиля в пределах базовой длины.

Величину параметров шероховатости Ra или Rz проставляют над знаком \sqrt{b} мкм. Величину Ra указывают без символа, а Rz-c символом.

В табл. 10.14, 10.15 и 10.16 приведены рекомендации по определению допусков формы и допусков расположения поверхностей [8].

Шероховатость поверхности (см. рекомендации в табл. 10.17), посадки и допуски формы и расположения поверхностей показаны на рабочих чертежах (см. рис. 10.11, 10.12, 10.13 и 10.14).

В заданиях на курсовое проектирование деталей машин в техникумах предусматривается не проектирование муфт для соединения валов, а выбор их из числа стандартных конструкций с учетом особенностей эксплуатации привода и с последующей проверкой элементов муфты на прочность.


Здесь приведены краткие сведения о муфтах наиболее распространенных типов — для постоянного соединения валов и предохранительных. О муфтах сцепных, обгонных, шарнирных и др. см. работу [15].

§ 11.1. МУФТЫ ДЛЯ ПОСТОЯННОГО СОЕДИНЕНИЯ ВАЛОВ

Если соосность соединяемых валов в процессе монтажа и эксплуатации строго выдерживается, то допустимо устанавливать жесткие муфты: фланцевые (табл. 11.1) и втулочные (табл. 11.2). Типоразмер муфты выбирают по диаметру вала и по величине расчетного вращающего момента

$$T_{\rm p} = kT_{\rm HOM} \leqslant [T], \tag{11.1}$$

11.1. Муфты фланцевые (по ГОСТ 20761 – 80, с сокращениями) Размеры, мм

Продолжение табл. 11.1

			<i>l</i> , не	более	<i>L</i> , не	более
[Т], Н∙м	d	D		Испол	інение	
			1	2	1	2
16	16; 18	80	40	28	84	60
31,5	16; 18 20; 22	90	40 50	28 36	84 104	60 76
63	20; 22 25; 28	100	50 60	36 42	104 124	76 83
125	25; 28 (30); 32; (35); 36	112	60 80	42 58	124 170	83 120
250	32; (35); 36 40; 45	140	80 110	58 82	170 230	120 170
400	(35); 36 40; 45; 50	150	80 110	58 82	170 230	120 170
630	45; 50; 55 60	170	110 140	82 105	230 290	170 220
1000	50; 55 60; (63); 70	180	110 140	82 105	230 290	170 220
1600	50 60; (63); 65; 70; (75); 80	190	110 140	82 105	230 290	170 220
2500	70; (75) 80; (85); 90; (95) 100	224	140 170 210	105 130 165	290 350 430	220 270 340

Примечания: 1. Значення [T] указаны для муфт из стали 40 и 35Л; для муфт из чугуна СЧ 20 значения [T] снижать в 2 раза.

- 2. Окружная скорость для стальных муфт (на наружном диаметре) до 70 м/с, для чугунных до 35 м/с.
- 3. Исполнение 1 для муфт, устанавливаемых на длинных концах валов; исполнение 2 для муфт на коротких концах валов.
 - 4. В скобках приведены иерекомендуемые значения.
- 5. Пример условного обозначения муфты с $T=400~{
 m H} \cdot {
 m M}$, с полумуфтами диаметрами отверстий 40 и 45 мм, исполнений 1 и 2, материал сталь 40

Муфта фланцевая 400-40-11-45-21 ГОСТ 20761-80

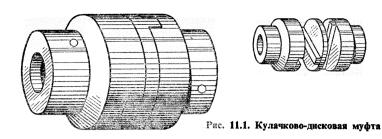
11.2 Муфты втулочные (по ГОСТ 24246-80, с сокращениями)

 $M6 \times 8,66$ 2-4 c ВИНТОМ Исполнение 4 Крепежные детали для неполнения 4×7,5 5×7,5 6×10 6 × 9 5×9 8×10 8×11 со шпонкой 2-3 6×6×25 $8 \times 7 \times 28$ $8 \times 7 \times 36$ $10 \times 8 \times 36$ 1 Йспдлнение 3 2±0,5 штйфтом 8 4×30 5×36 6×40 8×45 8 × 50 Размеры, мм исполнений 45 2 Д для 53 1-3 45 55 65 73 8 % K % q 42 48 Исполінение 🏻 2=0,5 16; 18 *d* для исполнений 23 21 23 26 18; 20 20; 22; 24 14 - 161-3 25 28 82 8 32 5 [7], Н.м для исполнений 250 355 Исполнение I \$ 68 180 250 125 180 12 31,5 50 a 8 125

700	280	400	260	32	56	55	105	65	10×60	$10 \times 8 \times 45$	8×11	
				35; 36(38)	28; 32						CI × 01	$M6 \times 10,66$
280	400	260	00%	(38)	32	09	120	80	10×65	$10 \times 8 \times 50$	10×13	
3	3	}	}	40 (42)	36	}		,	10×65	$12 \times 8 \times 50$	_	*
004	560	ı	1120	(42)	36	70	140	. 06	12×80	12×8×63	ı	M8×12,66
}	·			45; (48)	42					14×9×63		
260	900	ı	1600	(48); 50	42	. 80	150	100	12×90	14×9×63	ı	
3	}		; ;	(53)	46					$16 \times 10 \times 63$		M10×1666
90	1120	ŀ	2240	55	46	00	0.170	110	16×100	$16 \times 10 \times 70$	ı	2000
3	2		2	09	52	,				$18 \times 11 \times 70$		
1120	1600	ı	3150	60; 63; (65) 52; 56	52; \$6	100	180	120	16×110	$18 \times 11 \times 80$	١.	
1600	2240	1	4500	(65); 70;	62	110	200	130	20×120	$20 \times 12 \times 90$. I	M10×20,66
29.40	2150		6300	15	12	120	230	130		20 × 14 × 100	-	
	3. 3.				: 6	130	0%	1.70		25 × 14 × 110		M12 × 20 66
4500	6300	I I	12500	100	22	140	780	8 8	25×140	28×16×125	ı	
II p.	I OCT	ния: 1 23360-	1. Муфт - 78; 3 –	ы должны изго	товлять (пазом	ся в чел по ГО(T 2407	сполкен 1 80; 4	иях: 1 – со шті 1 – со цілицевы	Примечания: 1. Муфты должны изготовляться в четырск исполнениях: 1 — со штифтами цо ГОСТ 3129 — 70; 2 — со шпоночным пазом по ГОСТ 24071 — 80; 4 — со шлицевым посадочным отверстием по ГОСТ 6033 — 80.	129 — 70; 2 · ерстием по	- со шпоночным ГОСТ 6033 - 80.
2.2.4.4 ΣΕΦΕ	атериал эедельн скобка:	n Brync ilie ork X npub	Материал втулок — сталь 45. Предельные отклонения отве В скобках приведены нерекой Примлер условного обозначен	Материал втулок — сталь 45. Предвляные отклонения отверстий Н]4, валов — h14. В скобках приведены нерекомендуемые значения. В темает услояного обозвачения муфты 1-го исполнения с 7±560 Н.м. d-50 мм:	14, вало ые значе ы 1-го	з — h1. зния. исполн	4. ения с	T=560 F	1 ∙м. <i>d</i> ₌50 мм:			
					Myøma	втуло	ная 1-	560-50 1	Муфта втулочная 1-560-50 ГОСТ 24246-80	0		

11.3. Значення коэффициента k, учитывающего условия эксплуатации привода

Нагрузка	Типы машин	k
Постоянная, с кратковременными перегруз- ками до 120 % номинальной	Конвейеры ленточные, станки токарные, шлифо- вальные, фрезерные	1,15 – 1,20
Переменная, с колебаниями в пределах до 150 % номинальной	Конвейеры цепные, пластинчатые, винтовые; станки деревообделочные; центробежные насосы	1,30-1,50
Со значительными ко- лебаниями — до 200 % номинальной	Конвейеры скребковые и ковшовые (элеваторы); станки металлообрабатывающие с возвратно-поступательным движением; реверсивные приводы	1,7-2,0
Ударная, достигающая 300 % номинальной	Поршневые насосы и ком- прессоры; прессы и моло- ты; дробилки, шаровые мельницы	2,5-3,0


где k — коэффициент, учитывающий условия эксплуатации; значения его приведены в табл. 11.3; допускаемые значения [T] указаны в табл. 11.1—11.9.

Хотя нет необходимости проверять стандартные муфты на прочность, однако для учебных проектов рекомендуется выполнение проверочных расчетов, например, для втулочных муфт со штифтовыми соединениями — проверка штифтов на срез, со шпоночными й шлицевыми соединениями — проверка этих соединений по формулам главы VIII; при расчете болтовых соединений фланцевых муфт следует учитывать, что половина общего числа болтов устанавливается в отверстия без зазора, поэтому достаточно проверить только их на срез по условию прочности

$$\tau_{\rm cp} = \frac{F_t}{\pi d_6^2} \leqslant [\tau]_{\rm cp}, \tag{11.2}$$

где $F_t = \frac{2T_p}{D_0 z_1}$ — окружная сила, приходящаяся на один болт; D_0 — диаметр окружности расположения болтов; z_1 — число болтов, поставленных без зазора.

В некоторых учебниках рассматривается вариант установки всех болтов с зазором и приводятся формулы для расчета

болтов с затяжкой, препятствующей проворачиванию полумуфт. Практически такой случай исключен, и расчет болтов на затяжку не нужен.

Размеры болтов и число их в стандарте не указаны. Можно руководствоваться такими соотношениями: диаметр стержня болта $d_6 \approx 0,08d$ (с округлением до ближайшего большего значения по ГОСТу); число болтов z=4 при $T\leqslant 10^3$ Н м и z=6 при $T>10^3$ Н м.

Если в процессе эксплуатации привода возможно некоторое смещение валов, то их соединяют компенсирующими муфтами. К их числу относят кулачково-дисковые муфты (рис. 11.1); они допускают радиальное смещение валов порядка 0,03d и угловое до 30'. Наружный диаметр муфты D порядка (4-5)d. Выбирают муфту по ГОСТ 20720-81. Однако для курсовых проектов муфты этого типа рекомендовать не следует, так как они имеют большую массу, частоту вращения их приходится ограничивать из-за возможного дисбаланса: при наружном

диаметре до 300 мм — до 250 об/мин, св. 300 мм — до 100 об/мин. Компенсирующие муфты другого типа — цепные — представлены в табл. 11.4. Допускаемое угловое смещение — до 1°, радиальное — порядка 0,01d.

В приводах, испытывающих ударные нагрузки, следует устанавливать упругие муфты: втулочно-пальцевые (МУВП), технические данные их приведены в табл. 11.5; муфты упругие со звездочкой (табл. 11.6), муфты с торообразной оболочкой (табл. 11.7 и рис. 11.2) и др.

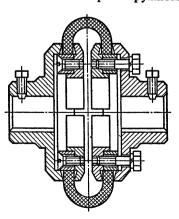
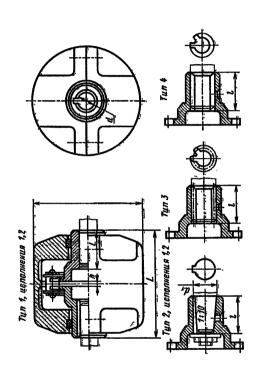



Рис. 11.2. Муфта с торообразной оболочкой

11.4. Муфты цепные однорядные (по ГОСТ 20742-81, с сокращениями)

Размеры, мм

			4			1,3			1,8		i.	2,0	3,5		3,8	
	-	Число зубъев	полу-	my∳! n		21		01		12		14		12	12	
		Приводная				HP19, 0,5-3180			ПР25, 4-6000			IIP31, 75-8850	ПР38, 1-12700			ПР50, 8-22680
		Hac- Tora	враще-	06/c		27		23				17	13		12	
		Ради- альное	смеще-враще-	Αğς Δ,		0,15	,		0,20				0,40		09'0	
					2	25	27	27	39	39	57	57	57	73	73	8
and the latest the lat			2		-	39	45	45	61	19	85	85	85	108	108	134
	1		ï		7	36	42	42	28	58	82	82	82	105	105	130
		ш	1	нение	-	Ą	1	1	80	80	110	110	110	140	140	170
		Тип		Исполнение	2	98	93	92	124	124	172	172	174	220	220	272
			2		-	108	128	128	168	168	228	228	230	290	290	352
Car and State State State	T				2	102	122	122	162	162	222	222	224	284	284	344
COLUMN TO SERVICE SERV					-	1	ŀ	1	206	206	278	278	280	354	354	424
			Q			110		125		140		200	210		280	
T. O THE S GRANDER			ā			20; 22	25; 28	25; 28	30; 32; 35; 36	32; 35; 36	40; 45	40; 45; 50; 5\$	50; 55	60; 63; 70; 71	63; 70; 71; 75	80;85;90
	l I	į	É É	i :		2	}	12\$		250	} 	200	1000		2000	; i

Продолжение табл. 11.4

[7], d D 1 2 1 2 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 2 1					1				1							
d D 1 2 1 2 1 2 смещение вращения видения в на видени в на видения в на видения в на видения в на видения в на видени							Ē	E			ĺ	Ради- эльное	Yac- ToTa		3yébeb	
80; 85; 310 424 432 342 210 165 169 124 0,60 12 IIP50,8-22680 14 100: 110	É;	ø	0			~		-		2		смеще	враще	роликовая цепь		
86; 85; 90; 95 310 424 344 352 272 170 130 134 94 0,60 12 ITPS0,8-22680 14 100: 110 514 424 432 342 210 165 169 124 174 145	¥ Ľ						Испол	нение				Δ,	06/c		· N	
80; 85; 90; 95 310 100: 110 514 424 344 352 372 170 130 134 94 0,60 12 11750,8-22680 14				Ŀ	2	-	2	-	2	-	2					
100: 110 514 424 432 342 210 165 169 124		+		424	1	352	272	170	130	134	94	09 0	12			3,8
	 4000 0			514	424	432	342	210	165	69	124					

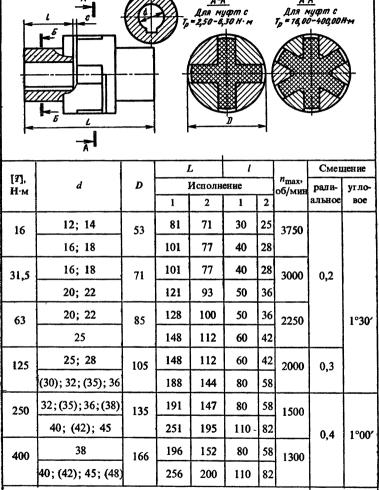
верствями на валы с эвольвентными шлицами; 4 – с отверстиями на валы с прямобочными шлицами. Исполнение 1 – на Примечания: 1. Угловое смещение осей валов – до 1. 2. Размеры *L и I муфт ги*лов 3 и 4 такие же, как муфт гила 1 исполнения 2. 3. Стандартом установлено четыре типа муфт: 1 – с цилиндрическим отверстием, 2 – с коническим отверстием, 3 – с от 4. Материал муфт – сталь марки не ниже 45, с твердостью рабочих поверхностей НRC 40-45. длинные концы валов; 2 – на короткие концы.

5. Допускается сочетание полумуфт разных типов и исполнений с различными диаметрами отверстий в пределах одного [7]

6. Условное обозначение муфты с [T] = 1000 Н.м. d = 60 мм, типа 1, исполнения1:

Муфта цепная 1000-60-1.1 ГОСТ 20742-81

11.5. Муфты упругие втулючю-пальцевые (по ГОСТ 21424-75, с сокращениями)

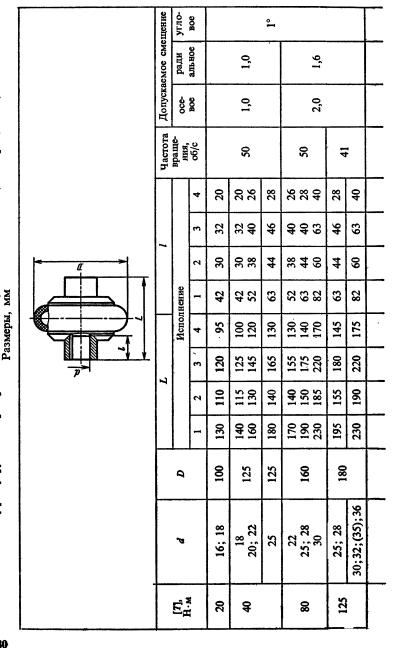

Размеры, мм

угловое Смещение альное ради-0,7 *п*тах, об/мин Tun II ı *l*, не более ຊ ಜ ജ Œ Исполнение ജ S IM Ħ І, не более Tun I ~ Q 25; 28 20; 22 12; 14 16; 18 Ę.H 31,5

Смещение			yrnosoe					10	ı						
Смер		ради-	альное			0,3		١	0.4	5	,		6,5	6,5	1 45.
		лах, об/мин			3800		3600	3000	2850		2300		1800	1450	не ниже марки
		II		2	38	99	95	99	99	72	72	98	\$6	125	сталь
более		I		1	09	\$8	\$8	\$8	85	107	101	135	135	170	льцев
І, не более				2	85	78	82	82	82	105	105	130	130	170	20; па
	Тип		Исполнение	1	08	011	110	110	110	140	140	170	170	210	рки СЧ
	Ţ	11	Испо	2	121	691	169	170	170	216	218	788	270	342	иже ма
І, не более				-	165	225	225	226	226	286	288	348	350	432	и не н
l, He				2	121	169	169	170	170	216	218	268	270	352	r - 4yr)
				-	165	225	225	226	226	286	288	348	350	432	олумуф
		Q			140	140	170	190	220	220	250	250	320	400	териал п
		8			32; (35); 36; (38)	40; (42); 45	40; (42); 45	45; (48); 50; (55); 56	50; (55); 56	(60); 63; (65); 70	63; (65); (70); 71	80; (85); 90	80; (85); 90; (95)	100; 110; (120); 125	Примечания. 1. Материал полумуфт – чугун не ниже марки СЧ 20; пальцев – сталь не ниже марки 45.
	!	[2] H :N	t :		250	250	200	710	1000		2000		4000	8000	ıďΠ

Типы муфт: 1 – с цилиндрическими отверстиями; II – с коническими отверстиями; исполнение 1 – на длинные концы валов, 2 – на короткие концы.
 В скобках приведены нерекомендуемые значения.

11.6. Муфты упругие со звездочкой (по ГОСТ 14084—76, с сокращениями) — Размеры, мм


Примечания: 1. Муфты исполнения 1 предназначены для установки на длинные концы валов, исполнения 2 — на короткие концы.

3. Pasmep c = 3 mm.

Допускается сочетание полумуфт исполнений 1 и 2 с различными внутренними диаметрами в пределах одного значения [7].

^{4.} В скобках приведены нерекомендуемые значения.

11.7. Муфта упругая с торообразной оболочкой (по ГОСТ 20884-82, с сокращениями)

10					1°30′							
2,0	2,5				3,0		3.6			4,0		
2,5	3,0				3,6		4.0	,		4,5		
41	33						79					
40 60	40 60	40	09	09	09	75	09	75	75	96	96	126
63 88	63 88	63	88	88	88	110	88	110	110	135	135	170
84	60 84	09	84	84	84	108	84	108	108	132	132	168
82 112	82 112	82	112	112	112	143	112	143	143	172	172	214
185 235	185 240	195	250	250	270	310	230	260	270	320	325	385
230	230 295	240	310	310	325	380	290	330	340	390	405	475
200	205 255	215	270	270	280	330	280	330	350	400	405	475
245 305	250 310	260	325	325	340	400	340	400	420	480	485	565
200	220	250		280	320	}	360	3	400	}	450	
32;35;36;(38) 40	32; 35; 36; (38) 40; 42, 45	35; 36; (38)	40; 45	40; 45; 50; 55	50; 55	60; 63	55	60; 63; 70	63; 70; (75)	80; (85); 90	80; (85); 90; (95)	100
200	250	315	3	200	008	}	1250		2000	3	3150	

на короткие концы валов; 3-c коническими отверстиями на длинные концы валов; 4-ro же, на короткие концы валов. 2. Допускается сочетание полумуфт разных исполнений с отверстиями различных диаметров в предедах одного номинального момента [Т]: 3. Допускается кратковременная перегрузка $T_{\rm ans.} \approx (2+3)$ [Т] 4. В скобках приведены нерекомендуемые значения 5. Пример условного обозначения муфты с [Т] = 200 H·м, d=40 мм, исполнения 1: Примечания: 1. Полумуфты должны изготовляться четырех исполнений: 1 – с цилиндрическими отверстиями на длинные концы валов; 2 – то же,

Муфта упругая с торообразной оболочкой 200-36.1-40.2 ГОСТ 20884-82 Муфта упругая с торообразной оболочкой 200-40-1 ГОСТ 20884—82 То же, с полумуфтами: исполнения 1 с d=36 мм, исполнения 2 с d=40 мм:

§ 11.2. ПРЕДОХРАНИТЕЛЬНЫЕ МУФТЫ

Для предохранения приводных устройств от повреждений при возникновении случайных перегрузок, превышающих расчетную нагрузку, применяют муфты, автоматически размыкающие приводную линию. Из большого количества конструкций предохранительных муфт, описанных в работе [15], ниже рассмотрены наиболее распространенные их типы сравнительно простой конструкции.

Для аварийного одноразового выключения привода при непредусмотренном резком повышении нагрузки применяют муфты с разрушающимися элементами; включение привода возможно лишь после замены разрушенного элемента, что затрудняет эксплуатацию. Поэтому такие муфты устанавливают в тех передачах, для которых аварийные ситуации маловероятны.

Простейшая муфта данного типа — со срезным штифтом (рис. 11.3); материал штифта — сталь 45, закаленная до твердости HRC 38—43; втулки из стали 40X, HRC 48—53; расстояние R от оси вала до оси штифта порядка $(2-2,5)\,d_{\rm вала}$. Диаметр штифта определяют из условия среза его силой $F_{\rm max}$ возникающей при аварийной нагрузке $F_{\rm max} = T_{\rm max}/R$; площадь поперечного сечения штифта в месте среза (с учетом ослабления ее риской, если она предусмотрена)

$$A = \frac{\pi d_{\text{im}}^2}{4} = \frac{F_{\text{max}}}{\tau_{\text{scp}}},$$
 (11.3)

где $T_{\rm max}$ принимают на 5-10% выше расчетного $T_{\rm p}=kT_{\rm ном}$ (значения k см. табл. 11.3); предел прочности на срез для

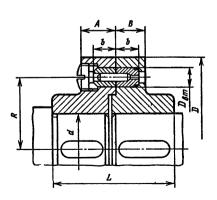
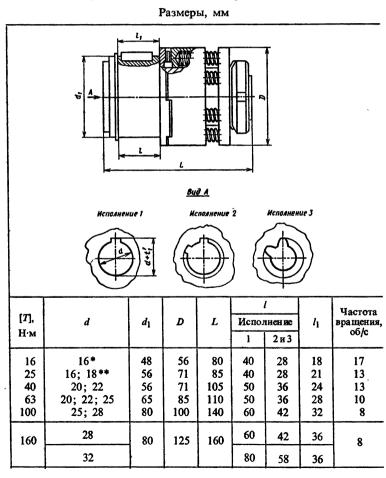


Рис. 11.3. Муфта со срезным штифтом

указанной стали $\tau_{\text{вср}} = 400 \text{ M}$ Па. Полученный по расчету диаметр штифта округляют по ГОСТ 3128-70 и уточняют размер R так, чтобы было выполнено условие

$$\frac{T_{\text{max}}}{\frac{R\pi d_{\text{ui}}^2}{4}} = \tau_{\text{a cp}}, \quad (11.4)$$


[но не [тср]!]

Наружный диаметр втулки $d_{\rm BT} \approx (3 \div 5) d_{\rm m}$; длина втулок в каждой полумуфте $l \approx d_{\rm BT} + 3$ мм.

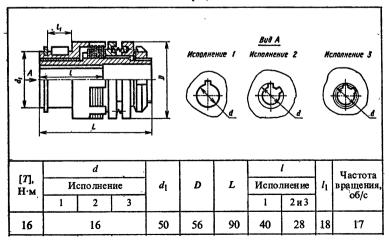
В передачах, испытывающих переменные нагрузки, следует устанавливать предохранительные муфты многократного действия: при критической нагрузке они должны срабатывать, а при снижении передаваемого момента до расчетной величины – автоматически включать передачу.

К числу таких муфт относят муфты предохранительныкулачковые (табл. 11.8) и шариковые (табл. 11.9). При значитель-

11.8. Муфты предохранительные кулачковые (по ГОСТ 15620-77, с сокращениями)

[<i>T</i>], H⋅м	d	d ₁	D	L	Испо	<i>І</i> пнение	<i>l</i> 1	Частота вращения, об/с
					1	2 и 3		80/0
250	38	90	140	180	80	58	42	7
	40	90	140	180	110	82	42	•
	38				80	58	48	
400	40; 42	105	180	190	110	82	48	5
	45				110	82	48	

^{*)} Для исполнения 3 d = 15 мм.


Примечания: 1. Стандартом установлено три исполнения: 1 – с гладким отверстием и шпоночным пазом; 2 – с прямобочными шлицами; 3 – с эвольвентными шлицами.

2. Условное обозначение муфты с номинальным моментом [T] = 250 H·м, d = 40 мм, исполнения 1:

Муфта предохранительная кулачковая 250-40-1 ГОСТ 15620-77

11.9. Муфты предохранительные шариковые (по ГОСТ 15621-77, с сокращениями)

Размеры, мм

^{**)} Для исполнения 3 d = 15 мм и d = 17 мм.

[<i>T</i>], Н·м	d			d ₁	D	L	1		1,	Частота вращения, об/с
	Исполнение						Исполнение			
	1	2	3				1	2и3		55/6
25	16; 18	-	17	65	71	100	40	28	21	13
40	20; 22			65	71	120	50	36	24	13
63	22			70	80	120	50	42	28	10
	25						60			
100	25 и 28			85	95	150	60	42	32	8
160	28			85	100	190	60	42	36	8,
	32						80	58		-,
250	38			100	125	220	80	58	42	7
	40						110	82		
400	38			100	155	260	80	58	48	5
	40 ; 4 5	42 48	45				110	82		

Примечания: 1. Стандартом установлено три исполнения: 1-c гладким отверстием и шпоночным пазом; 2-c прямобочными шлицами; 3-c эвольвентными шлицами.

2. Условное обозначение муфты с [T] = 250 H·м, d = мм, исполнения 1: Муфта предохранительная шариковая 250-40-1 ГОСТ 15621-77

ных колебаниях нагрузки и частых срабатываниях в муфтах возникают большие динамические нагрузки, поэтому область их применения ограничена до частот вращения порядк: 300-400 об/мин. Более удобны в эксплуатации муфты предохранительные фрикционные дисковые (табл. 11.10). Момент срабатывания таких муфт под действием критической нагрузки регулируют пружинами, создающими осевую силу F_a ; предельное значение ее определяют из условия, чтобы давление на диски не превышало допускаемой величины $\lceil p \rceil$:

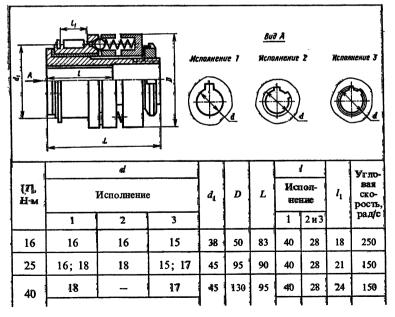
$$F_a \leqslant \frac{[p]\pi(D_1^2 - D_2^2)}{4},$$
 (11.5)

где [p] = 0.25 МПа для несмазываемых муфт с асбестовым обкладками на дисках; для смазываемых муфт со стальными

дисками [p] = 0.8 МПа; то же, с бронзовыми дисками [p] = 0.5 МПа; D_1 и D_2 — наружный и внутренний диаметры конъцевой поверхности трения дисков.

Предельный момент $T_{\rm np}$ начала срабатывания муфты определяют из условия равенства его моменту от сил трения на лисках

$$T_{\text{rap}} = T_{\text{rap}} = f F_{a} R z, \qquad (11.6)$$


тде f — коэффициент трения; для смазываемых бронзовых и стальных дисков со смазкой f = 0,08; для дисков с асбестовой обкладкой f = 0,3; R — приведенный радиус кольца трения,

$$R = 0.33 \frac{D_1^3 - D_2^3}{D_1^2 - D_2^2}.$$

Предельный момент $T_{\rm пp}$ принимают на 5—10 % выше расчетного $T_{\rm p}=kT_{\rm hom}$, где k — коэффициент по табл. 11.3.

11.10. Муфты предохранительные фрикционные (по ГОСТ 15622—77, с сокращениями)

Размеры, мм

[T],	ı	<i>d</i> Исполнение				L	Исп	!	,	Угло- вая ско-
Н∙м	!					L	нен		I_1	рость, рад/с
	1	2	3				1	2.и 3.		Purito
40	1	20; 22					50	36	24	100
63		55	150	120	50	36	28			
		25					60	42		100
100		25; 28		65	165	125	60	42	32	
	30.	_	30				80	58		
160		28		70·	180	150	60	42	36	80
		32					80	58		
250	36	38	38	70	185	160	80	58	42	60
,	40:		40				110	82		
400		38		90	205	180	80	58	48	40
	42; 45; 48	42; 48	42; 45				110	82		
630	45; 50; 55	48; 54	45; 50; 55	95	220	240	110	82	56	40
1000	50; 55	54	50; 55	120	260	270	110	. 82	67	35
	60; 63	60	60				140	105		
1600	63; 65; 70; 75	65; 72	60; 65; 70; 75	140.	290	285	1:40	105	75	35
2500	70; 75	72	70; 75	150	315	15 330	140	105	90	
	80;85;90	82; 92	80;85;90				170	130	•	
4000	80;85;90	82; 92	80;85;90	160	370	355	170	130	120	35
	100	102	100				210	165		

Примечания: 1. Стандартом установлено три исполиения: 1-c гладким отверстием и шпоночным пазом; 2-c прямобочными шлицами; 3-c эвольвентными шлицами.

Муфта предохранительная фрикционная 400-45-1 ГОСТ 15622-77

^{2.} Условное обозначение муфты с [T] = 400 H·м, d = 45 мм, исполнение 1:

Искомое число пар трения

$$z = \frac{T_{\rm np}}{fF_aR}. (11.7)$$

Полученный результат округляют до четного числа и находят число ведущих дисков $z_1 = 0.5z$ и ведомых $z_2 = z_1 + 1$.

Пример. Рассчитать предохранительную фрикционную дисковую муфту для соединения валов диаметром d=40 мм, передаваемый номинальный момент $T_{\rm H}=200$ H·м, частота вращения n=600 об/мин.

Решение. По табл. 11.10 находим наружный диаметр муфты D=185 мм, $T_{\rm H}=200$ Н·м. Принимаем коэффициент запаса сцепления $\beta=1,25$; расчетный момент $T_{\rm p}=\beta T_{\rm H}=1,25\cdot 200=250$ Н·м. Диски стальные, ведущие — с асбестовыми обкладками; коэффициент трения f=0,3; $[p]\leqslant 0,25$ МПа. Диаметры кольца трения: наружный $D_1=(3,5\div 4)\,d=(3,5\div 4)\cdot 40=140\div 160$ мм; принимаем $D_1=150$ мм; внутренний $D_2=2,5d=2,5\cdot 40=100$ мм.

Приведенный радиус кольца трения $R = \frac{D_1^3 - D_2^3}{3(D_1^2 - D_2^2)} = \frac{150^3 - 100^3}{3(150^2 - 100^2)} = 63,5$ мм.

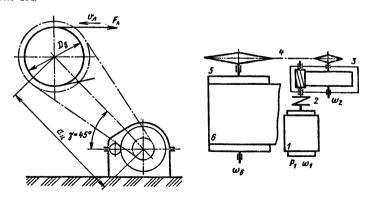
Допускаемая осевая сила $[F_a] = [p] \frac{\pi}{4} (D_1^2 - D_2^2) = \frac{0.25 \cdot 3.14 (150^2 - 100^2)}{4} = 2460 \text{ H.}$

Число пар трения $z = \frac{T_p}{fF_aR} = \frac{250 \cdot 10^3}{0.3 \cdot 2460 \cdot 63,5} = 5,3$. Округляем до четного числа z = 6.

Число дисков: ведущих $z_1=z/2=3$; ведомых $z_2=z_1+1=4$. Уточняем $F_a=\frac{T_p}{fzR}=\frac{250\cdot 10^3}{0.3\cdot 6\cdot 63.5}=2200$ H; условие $F_a\leqslant$ \leqslant $[F_a]$ выполнено.

глава XII

ПРИМЕРЫ РАСЧЕТА И ПРОЕКТИРОВАНИЯ ПРИВОДОВ


§ 12.1. ПРОЕКТИРОВАНИЕ ПРИВОДА С ОДНОСТУПЕНЧАТЫМ ЦИЛИНДРИЧЕСКИМ КОСОЗУБЫМ РЕДУКТОРОМ И ЦЕПНОЙ ПЕРЕДАЧЕЙ

ЗАДАНИЕ НА ПРОЕКТИРОВАНИЕ

Спроектировать одноступенчатый горизонтальный цилинд рический косозубый редуктор и цепную передачу для привода к ленточному конвейеру (рис. 12.1).

Полезная сила, передаваемая лентой конвейера, $F_{\pi}=8,55$ кH; скорость ленты $v_{\pi}=1,3$ м/с; диаметр приводного барабана $D_{6}=400$ мм. Редуктор нереверсивный, предназначен для длительной эксплуатации; работа односменная; валы уста новлены на подшипниках качения.

Формулы для расчета зубчатых колес см. гл. III, ценной передачи — гл. VII, валов — гл. VIII, подшипников — гл. IX.

Рас. 12.1. Привод ленточного конвейера с цилиндрическим редуктором и цепной передачей:

I — электродвигатель; 2 — муфта; 3 — одноступенчатый редуктор; 4 — цепная передача; 5 — приводной барабан; 6 — лента конвейерная

РАСЧЕТ И КОНСТРУИРОВАНИЕ

Выбор электродвигателя и кинематический расчет (рис. 12,2)

По табл. 1.1 примем:

КПД пары цилиндрических зубчатых колес $\eta_1=0.98$; коэффициент, учитывающий потери пары подшипников качения, $\eta_2=0.99$; КПД открытой цепной передачи $\eta_3=0.92$; КПД, учитывающий потери в опорах вала приводного барабана, $\eta_4=0.99$.

Общий КПД привода

$$\eta = \eta_1 \eta_2^2 \eta_3 \eta_4 = 0.98 \cdot 0.99^2 \cdot 0.92 \cdot 0.99 = 0.875.$$

Мощность на валу барабана $P_6 = F_n v_n = 8,55 \cdot 1,3 = 11,1$ кВт. Требуемая мощность электродвигателя

$$P_{\rm rp} = \frac{P_6}{\eta} = \frac{11.1}{0.875} = .12.7 \text{ kBt.}$$

Угловая скорость барабана

$$\omega_6 = \frac{2v_n}{D_6} = \frac{2 \cdot 1,3}{0,4} = 6,5$$
 рад/с.

Частота вращения барабана

$$n_6 = \frac{30\omega_6}{\pi} = \frac{30 \cdot 6,5}{3.14} = 62 \text{ ob/Muh.}$$

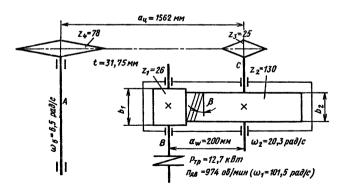


Рис. 12.2. Кинематическая схема привода: A — вал барабана; B — вал электродвигателя и 1-й вал редуктора; C — 2-й вал редуктора

В табл. П.1 (см. приложение) по требуемой мощности $P_{\rm Tp}=12,7$ кВт с учетом возможностей привода, состоящего из цилиндрического редуктора и цепной передачи (см. § 1.3, гл. I, возможные значения частных передаточных отношений для цилиндрического зубчатого редуктора $i_{\rm p}=3\div 6$ и для цепной передачи $i_{\rm q}=3\div 6, i_{\rm oбiq}=i_{\rm p}i_{\rm q}=9\div 36$), выбираем электродвигатель трехфазный короткозамкнутый серии 4A, закрытый, обдуваемый, с синхронной частотой вращения 1000 об/мин 4A 160 M6 У3, с параметрами $P_{\rm дв}=15,0$ кВт и скольжением 2,6% (ГОСТ 19523-81). Номинальная частота вращения $n_{\rm дв}=1000-26=974$ об/мин, а угловая скорость $\omega_{\rm дв}=\frac{\pi n_{\rm дв}}{30}=\frac{3,14\cdot 974}{30}=101,5$ рад/с.

Проверим общее передаточное отношение:

$$i = \frac{\omega_{\text{AB}}}{\omega_6} = \frac{101,5}{6,5} = 15,65,$$

что можно признать приемлемым, так как оно находится между 9 и 36 (большее значение принимать не рекомендуют).

Частные передаточные числа (они равны передаточным отношениям) можно принять: для редуктора по ГОСТ 2185-66

(см. с. 36)
$$u_p = 5$$
, для цепной передачи $u_q = \frac{15,65}{5} = 3,14$.

Частоты вращения и угловые скорости валов редуктора и приводного барабана:

Вал В	$n_1 = n_{\rm дв} = 974$ об/мин	$\omega_l = \omega_{дB} = 101,5$ рад/с
Вал С	$n_2 = \frac{n_1}{u_p} = \frac{974}{5} = 194$ об/мин	$\omega_2 = \frac{\omega_1}{u_p} = \frac{101,5}{5} = 20,3$ рад/с
Вал А	n ₆ = 62 об/мин (см. выше)	ω ₆ = 6,5 рад/с

Вращающие моменты: на валу шестерни

$$T_1 = \frac{P_1}{\omega_1} = \frac{P_{\text{rp}}}{\omega_1} = \frac{12,7 \cdot 10^3}{101,5} = 125 \text{ H} \cdot \text{M} = 125 \cdot 10^3 \text{ H} \cdot \text{MM};$$

на валу колеса

$$T_2 = T_1 u_p = 125 \cdot 10^3 \cdot 5 = 625 \cdot 10^3 \text{ H} \cdot \text{MM}.$$

II. Расчет зубчатых колес редуктора

Так как в задании нет особых требований в отношении габаритов передачи, выбираем материалы со средними механическими характеристиками (см. гл. III, табл. 3.3): для шестерни сталь 45, термическая обработка — улучшение, твердость НВ 230; для колеса — сталь 45, термическая обработка — улучшение, но твердость на 30 единиц ниже — НВ 200.

Допускаемые контактные напряжения [формула (3.9)]

$$\left[\sigma_{H}\right] = \frac{\sigma_{H \lim b} K_{HL}}{\left[S_{H}\right]},$$

где $\sigma_{H \ lim \ b}$ — предел контактной выносливости при базовом числе пиклов.

По табл. 3.2 гл. III для углеродистых сталей с твердостью поверхностей зубьев менее HB 350 и термической обработкой (улучшением)

$$\sigma_{H \lim b} = 2HB + 70;$$

 K_{HL} — коэффициент долговечности; при числе циклов нагружения больше базового, что имеет место при длительной эксплуатации редуктора, принимают $K_{HL}=1$; коэффициент безопасности $[S_H]=1,10$.

Для косозубых колес расчетное допускаемое контактное напряжение по формуле (3.10) гл. III

$$[\sigma_H] = 0.45([\sigma_{H1}] + [\sigma_{H2}]);$$

для шестерни
$$\left[\sigma_{H1}\right] = \frac{(2HB_1 + 70)K_{HL}}{\left\lceil S_H \right\rceil} = \frac{(2 \cdot 230 + 70)1}{1,1} \approx$$

≈ 482 MПa;

для колеса
$$[\sigma_{H2}] = \frac{(2HB_2 + 70)K_{HL}}{[S_H]} = \frac{(2 \cdot 200 + 70)1}{1,1}$$
 \approx 428 МПа.

Тогда расчетное допускаемое контактное напряжение

$$[\sigma_H] = 0.45(482 + 428) = 410 \text{ M}\Pi \text{a}.$$

Требуемое условие $[\sigma_H] \le 1,23 [\sigma_{H2}]$ выполнено.

Коэффициент $K_{H\beta}$, несмотря на симметричное расположение колес относительно опор (см. рис. 12.2), примем выше рекомендуемого для этого случая, так как со стороны цепной передачи действуют силы, вызывающие дополнительную деформацию ведомого вала и ухудшающие контакт зубьев. Принимаем предварительно по табл. 3.1, как в случае несим-

метричного расположения колес, значение $K_{H\beta} = 1,25$.

Принимаем для косозубых колес коэффициент ширины венца по межосевому расстоянию $\psi_{ba} = \frac{b}{a_{va}} = 0,4$ (см. с. 36).

Межосевое расстояние из условия контактной выносливости активных поверхностей зубьев по формуле (3.7) гл. III

$$a_w = K_a(u+1) \sqrt[3]{\frac{T_2 K_{H\beta}}{[\sigma_H]^2 u^2 \psi_{ba}}} = 43(5+1) \sqrt[3]{\frac{625 \cdot 10^3 \cdot 1,25}{410^2 \cdot 5^2 \cdot 0,4}} \approx$$

$$\approx 198 \text{ MM,}$$

где для косозубых колес $K_a = 43$, а передаточное число нашего редуктора $u = u_{\rm p} = 5$.

Ближайшее значение межосевого расстояния по ГОСТ 2185-66 $a_{\rm w}=200$ мм (см. с. 36).

Нормальный модуль зацепления принимаем по следующей рекомендации:

 $m_n = (0.01 \div 0.02) \ a_w = (0.01 \div 0.02) \ 200 = 2 \div 4$ мм; принимаем по ГОСТ 9563 – 60* $m_n = 2.5$ мм (см. с. 36).

Примем предварительно угол наклона зубьев $\beta = 10^{\circ}$ и определим числа зубьев шестерни и колеса [см. формулу (3.16)]:

$$z_1 = \frac{2a_w \cos \beta}{(u+1)m_n} = \frac{2 \cdot 200 \cdot \cos 10^\circ}{(5+1)2.5} = \frac{400 \cdot 0.985}{15} = 26.2.$$

Принимаем $z_1 = 26$; тогда $z_2 = z_1 u = 26 \cdot 5 = 130$. Уточненное значение угла наклона зубьев

$$\cos \beta = \frac{(z_1 + z_2)m_n}{2a_w} = \frac{(26 + 130) \cdot 2.5}{2 \cdot 200} = 0.9750;$$
$$\beta = 12^{\circ}50'.$$

Основные размеры шестерни и колеса:

диаметры делительные:

$$d_1 = \frac{m_n}{\cos \beta} z_1 = \frac{2.5}{0.975} \cdot 26 = 66,66 \text{ mm};$$

$$d_2 = \frac{m_n}{\cos \beta} z_2 = \frac{2.5}{0.975} \cdot 130 = 333,34 \text{ mm}.$$

Проверка:
$$a_w = \frac{d_1 + d_2}{2} = \frac{66,66 + 333,34}{2} = 200$$
 мм;

диаметры вершин зубьев:

$$d_{a1} = d_1 + 2m_n = 66,66 + 2 \cdot 2,5 = 71,66$$
 MM;
 $d_{a2} = d_2 + 2m_n = 333,34 + 2 \cdot 2,5 = 338,34$ MM;

ширина колеса $b_2 = \psi_{ba}a_w = 0.4 \cdot 200 = 80$ мм; ширина шестерни $b_1 = b_2 + 5$ мм = 85 мм.

Определяем коэффициент ширины шестерни по диаметру:

$$\psi_{bd} = \frac{b_1}{d_1} = \frac{85}{66,66} = 1,275.$$

Окружная скорость колес и степень точности передачи

$$v = \frac{\omega_1 d_1}{2} = \frac{101,5 \cdot 66,66}{2 \cdot 10^3} = 3,38 \text{ m/c}.$$

При такой скорости для косозубых колес следует принять 8-ю степень точности (см. с. 32).

Коэффициент нагрузки

$$K_H = K_{H8}K_{H\alpha}K_{H\nu}$$

Значения $K_{H\beta}$ даны в табл. 3.5; при $\psi_{bd}=1,275$, твердости $HB\leqslant 350$ и несимметричном расположении колес относительно опор с учетом изгиба ведомого вала от натяжения цепной передачи $K_{H\beta}\approx 1,155$.

По табл. 3.4 гл. III при v=3,38 м/с и 8-й степени точности $K_{H\alpha}\approx 1,08$. По табл. 3.6 для косозубых колес при $v\leqslant 5$ м/с имеем $K_{Hv}=1,0$. Таким образом, $K_H=1,155\times 1,08\times 1,0=1,245$.

Проверка контактных напряжений по формуле (3.6):

$$\sigma_H = \frac{270}{a_w} \sqrt{\frac{T_2 K_H (u+1)^3}{b_2 u^2}} = \frac{270}{200} \sqrt{\frac{625 \cdot 10^3 \cdot 1,245 (5+1)^3}{80 \cdot 25}} =$$

$$= 392 \text{ M}\Pi a < [\sigma_H].$$

Силы, действующие в зацеплении [формулы (8.3) и (8.4) гл. VIII]:

окружная
$$F_t = \frac{2T_1}{d_1} = \frac{2 \cdot 125 \cdot 10^3}{66,66} = 3750 \text{ H};$$

радиальная
$$F_r = F_t \frac{\text{tg } \alpha}{\cos \beta} = 3750 \frac{\text{tg } 20^\circ}{\cos 12^\circ 50'} = 1400 \text{ H};$$

осевая $F_a = F_t \operatorname{tg} \beta = 3750 \operatorname{tg} 12^{\circ}50' = 830 \text{ H}.$

Проверяем зубья на выносливость по напряжениям изгиба по формуле (3.25):

$$\sigma_F = \frac{F_q K_F Y_F Y_\beta K_{F\alpha}}{b m_n} \leqslant [\sigma_F].$$

Здесь коэффициент нагрузки $K_F = K_{F\beta}K_{F\nu}$ (см. с. 42). По табл. 3.7 при $\psi_{bd} = 1,275$, твердости $HB \leqslant 350$ и несиммет-

ричном расположении зубчатых колес относительно опор $K_{F\beta}=1,33$. По табл. 3.8 $K_{F\nu}=1,3$. Таким образом, коэффициент $K_F=1,33\cdot 1,3=1,73$; Y_F — коэффициент, учитывающий форму зуба и зависящий от эквивалентного числа зубьев z_{ν} [см. гл. III, пояснения к формуле (3.25)]:

у шестерни
$$z_{v1} = \frac{z_1}{\cos^3 \beta} = \frac{26}{0.975^3} \approx 28;$$

у колеса $z_{v2} = \frac{z_2}{\cos^3 \beta} = \frac{130}{0.975^3} \approx 140.$

$$Y_{F1} = 3.84 \text{ u } Y_{F2} = 3.60 \text{ (cm. c. 42)}.$$

Допускаемое напряжение по формуле (3.24)

$$\left[\sigma_F\right] = \frac{\sigma_{F \lim b}^0}{\left[S_F\right]}.$$

По табл. 3.9 для стали 45 улучшенной при твердости $HB \leq 350 \,\, \sigma^0_{Flim\, b} = 1.8 HB.$

Для шестерни $\sigma^0_{F \text{lim} b} = 1,8 \cdot 230 = 415$ МПа; для колеса $\sigma^0_{F \text{lim} b} = 1,8 \cdot 200 = 360$ МПа. $[S_F] = [S_F]' [S_F]'' -$ коэффициент безопасности [см. пояснения к формуле (3.24)], где $[S_F]' = 1,75$ (по табл. 3.9), $[S_F]'' = 1$ (для поковок и штамповок). Следовательно, $[S_F] = 1,75$.

Допускаемые напряжения:

для шестерни
$$\left[\sigma_{F1}\right] = \frac{415}{1,75} = 237$$
 МПа;

для колеса
$$[\sigma_{F2}] = \frac{360}{1,75} = 206$$
 МПа.

Находим отношения
$$\frac{[\sigma_F]}{Y_F}$$
:

для шестерни
$$\frac{237}{3,84} = 62$$
 МПа;

для колеса
$$\frac{206}{3,60} = 57,5$$
 МПа.

Дальнейший расчет следует вести для зубьев колеса, для которого найденное отношение меньше.

Определяем коэффициенты Y_{β} и $K_{F\alpha}$ [см. гл. III, пояснения к формуле (3.25)]:

$$Y_{\beta} = 1 - \frac{\beta^{\circ}}{140} = 1 - \frac{12,8}{140} = 1 - 0,09 = 0,91;$$

$$K_{F\alpha} = \frac{4 + (\epsilon_{\alpha} - 1)(n - 5)}{4\epsilon_{\alpha}};$$

для средних значений коэффициента торцового перекрытия $\varepsilon_{\alpha}=1,5$ и 8-й степени точности $K_{F\alpha}=0,92$.

Проверяем прочность зуба колеса по формуле (3.25):

$$\sigma_{F2} = \frac{F_t K_F Y_F Y_{\beta} K_{F\alpha}}{b_2 m_n} \leq [\sigma_F];$$

$$\sigma_{F2} = \frac{3750 \cdot 1,73 \cdot 3,60 \cdot 0,91 \cdot 0,92}{80 \cdot 2,5} \approx 98 \text{ M}\Pi\text{a} < [\sigma_{F2}] = 206 \text{ M}\Pi\text{a}.$$

Условие прочности выполнено.

III. Предварительный расчет валов редуктора

Предварительный расчет проведем на кручение по пониженным допускаемым напряжениям.

Ведущий вал:

диаметр выходного конца при допускаемом напряжении $[\tau_k] = 25$ МПа по формуле (8.16) гл. VIII

$$d_{\text{B1}} = \sqrt[3]{\frac{16T_{\text{K1}}}{\pi \left[\tau_{\text{K}}\right]}} = \sqrt[3]{\frac{16 \cdot 125 \cdot 10^3}{\pi 25}} \approx 29.3 \text{ MM}.$$

Так как вал редуктора соединен муфтой с валом электродвигателя (см. рис. 12.1), то необходимо согласовать диаметры ротора $d_{\rm nB}$ и вала $d_{\rm B1}$. Иногда принимают $d_{\rm B1}=d_{\bar{\rm nB}}$. Некоторые муфты, например УВП (см. гл. XI), могут соединять валы разных диаметров в пределах одного номинального момента. У подобранного электродвигателя (см. табл. П2) диаметр вала может быть 42 или 48 мм. Примем $d_{\rm nB}=42$ мм. Выбираем МУВП по ГОСТ 21424—75 с расточками полумуфт под $d_{\rm nB}=42$ мм и $d_{\rm B1}=32$ мм (рис. 12.3). Примем под подшипниками $d_{\rm n1}=40$ мм. Шестерню выполним за одно целое с валом (см. рис. 10.6). Иногда вал электродвигателя не соединяется непосредственно с ведущим валом редуктора, а между ними имеется ременная или цепная передача (рис. 12.4).

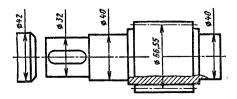
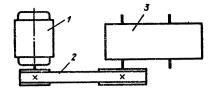



Рис. 12.3. Конструкция ведущего вала

Рис. 12.4. Схема привода: I — электродвигатель; 2 — клиноременная передача; 3 — редуктор

Ведомый вал (рис. 12.5). Учитывая влияние изгиба вала от натяжения цепи, принимаем $[\tau_{\kappa}]=20\,$ МПа.

Диаметр выходного конца вала

$$d_{\rm B2} = \sqrt[3]{\frac{16 \cdot 625 \cdot 10^3}{\pi 20}} = 53,7 \text{ MM}.$$

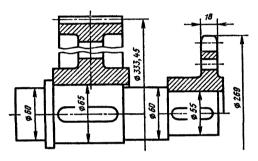


Рис. 12.5. Конструкция ведомого вала

Принимаем ближайшее большее значение из стандартного ряда [см. гл. VIII, пояснения к формуле (8.16)]: $d_{\rm B2} = 55\,$ мм. Диаметр вала под подшипниками принимаем $d_{\rm n2} = 60\,$ мм, под зубчатым колесом $d_{\rm K2} = 65\,$ мм.

Диаметры остальных участков валов назначают исходя из конструктивных соображений при компоновке редуктора.

IV. Конструктивные размеры шестерии и колеса

Шестерню выполняем за одно целое с валом (см. рис. 10.6, a); ее размеры определены выше: $d_1 = 66,66$ мм; $d_{a1} = 71,66$ мм; $b_1 = 85$ мм.

Колесо кованое (см. гл. X, рис. 10.2, a и табл. 10.1): $d_2 = 333,34$ мм; $d_{a2} = 338,34$ мм; $b_2 = 80$ мм.

Диаметр ступицы $d_{\rm cr}=1,6d_{\rm k2}=1,6\cdot65=100$ мм; длина ступицы $l_{\rm cr}=(1,2\div1,5)\,d_{\rm k2}=(1,2\div1,5)\cdot65=78\div98$ мм, принимаем $l_{\rm cr}=80$ мм.

Толщина обода $\delta_0 = (2,5 \div 4) m_n = (2, \div 4) \cdot 2,5 = 6,25 \div 10$ мм, принимаем $\delta_0 = 10$ мм.

Толщина диска C = 0.3 $b_2 = 0.3 \cdot 80 = 24$ мм.

V. Конструктивные размеры корпуса редуктора (см. рис. 10.18 и табл. 10.2 и 10.3)

Толщина стенок корпуса и крышки: $\delta = 0.025a + 1 = 0.025 \cdot 200 + 1 = 6$ мм, принимаем $\delta = 8$ мм; $\delta_1 = 0.02a + 1 = 0.02 \cdot 200 + 1 = 5$ мм, принимаем $\delta_1 = 8$ мм.

Толщина фланцев поясов корпуса и крышки: верхнего пояса корпуса и пояса крышки

$$b = 1.5\delta = 1.5 \cdot 8 = 12$$
 MM; $b_1 = 1.5\delta_1 = 1.5 \cdot 8 = 12$ MM;

нижнего пояса корпуса

$$p = 2,35\delta = 2,35 \cdot 8 = 19$$
 мм; принимаем $p = 20$ мм.

Диаметр болтов: фундаментных $d_1 = (0.03 \div 0.036) a + 12 = (0.03 \div 0.36) 200 + 12 = 18 \div 19.2$ мм; принимаем болты с резьбой M20;

крепящих крышку к корпусу у подшипников $d_2 = (0,7 \div 0,75) d_1 = (0,7 \div 0,75) 20 = 14 \div 15$ мм; принимаем болты с резьбой M16;

соединяющих крышку с корпусом $d_3 = (0.5 \div 0.6) d_1 = (0.5 \div 0.6) 20 = 10 \div 12$ мм; принимаем болты с резьбой M12.

VI. Расчет цепной передачи

Выбираем приводную роликовую однорядную цепь (см. гл. VII, табл. 7.15).

Вращающий момент на ведущей звездочке

$$T_3 = T_2 = 625 \cdot 10^3 \text{ H} \cdot \text{MM}.$$

Передаточное число было принято ранее

$$u_{\rm u} = 3,14.$$

Число зубьев: ведущей звездочки [см. с. 148]

$$z_3 = 31 - 2u_0 = 31 - 2 \cdot 3{,}14 \approx 25;$$

ведомой звездочки

$$z_4 = z_3 u_{\rm n} = 25 \cdot 3{,}14 = 78{,}3.$$

Принимаем

$$z_3 = 25 \text{ M } z_4 = 78.$$

Тогда фактическое

$$u_{\rm u} = \frac{z_4}{z_3} = \frac{78}{25} = 3{,}12.$$

Отклонение

$$\frac{3,14-3,12}{3.14}$$
100% = 0,636%, что допустимо.

Расчетный коэффициент нагрузки [см. гл. VII, формулу (7.38) и пояснения к ней]

$$K_3 = k_n k_a k_H k_D k_{CM} k_{\Pi} = 1 \cdot 1 \cdot 1 \cdot 1,25 \cdot 1 \cdot 1 = 1,25,$$

где $k_{\rm d}=1$ — динамический коэффициент при спокойной нагрузке (передача к ленточному конвейеру); $k_a=1$ учитывает влияние межосевого расстояния $[k_a=1]$ при $a_{\rm u} \le (30 \div 60) t$]; $k_{\rm H}=1$ — учитывает влияние угла наклона линии центров $(k_{\rm H}=1]$, если этот угол не превышает 60°; в данном примере $\gamma=45^\circ$, см. рис. 12.1); $k_{\rm p}$ учитывает способ регулирования натяжения цепи; $k_{\rm p}=1,25$ при периодическом регулировании натяжения цепи; $k_{\rm cm}=1$ при непрерывной смазке; $k_{\rm n}$ учитывает продолжительность работы в сутки, при односменной работе $k_{\rm n}=1$.

Для определения шага цепи по формуле (7.38) гл. VII надо знать допускаемое давление [p] в шарнирах цепи. В табл. 7.18 допускаемое давление [p] задано в зависимости от частоты вращения ведущей звездочки и шага t. Поэтому для расчета по формуле (7.38) величиной [p] следует задаваться ориентировочно. Ведущая звездочка имеет частоту вращения

 $n_2 = \frac{\omega_2 30}{\pi} = \frac{20,3 \cdot 30}{\pi} \approx 194$ об/мин. Среднее значение допускае-

мого давления при $n \approx 200$ об/мин [p] = 23 МПа.

Шаг однорядной цепи (m=1)

$$t \ge 2.8 \sqrt[3]{\frac{T_3 K_3}{z_3 [p]}} = 2.8 \sqrt[3]{\frac{625 \cdot 10^3 \cdot 1.25}{25 \cdot 23}} \approx 31 \text{ mm}.$$

Подбираем по табл. 7.15 цепь ПР-31,75-88,50 по ГОСТ 13568 — 75, имеющую t=31,75 мм; разрушающую нагрузку $Q\approx88,5$ кH; массу q=3,8 кг/м; $A_{\rm on}=262$ мм².

Скорость цепи

$$v = \frac{z_3 t n_3}{60 \cdot 10^3} = \frac{25 \cdot 31,75 \cdot 194}{60 \cdot 10^3} = 2,56 \text{ M/c}.$$

Окружная сила

$$F_{tu} = \frac{P_2}{v} = \frac{T_2 \omega_2}{v} = \frac{625 \cdot 20.3}{2.56} = 4950 \text{ H}.$$

Давление в шарнире проверяем по формуле (7.39)

$$p = \frac{F_{tu}K_3}{A_{on}} = \frac{4950 \cdot 1,25}{262} = 23,6 \text{ M}\Pi a.$$

Уточняем по табл. 7.18 допускаемое давление $[p] = 22[1+0.01(z_3-17)] = 22[1+0.01(25-17)] = 23.76$ МПа. Условие p < [p] выполнено. В этой формуле 22 МПа — табличное значение допускаемого давления по табл. 7.18 при n = 200 об/мин и t = 31.75 мм.

Определяем число звеньев цепи по формуле (7.36)

$$L_t = 2a_t + 0.5z_{\Sigma} + \frac{\Delta^2}{a_t},$$

где
$$a_t = \frac{a_u}{t} = 50$$
 (см. с. 148); $z_{\Sigma} = z_3 + z_4 = 25 + 78 = 103$;

$$\Delta = \frac{z_4 - z_3}{2\pi} = \frac{78 - 25}{2 \cdot 3,14} = \frac{53}{6,28} = 8,45.$$

Тогда

$$L_t = 2.50 + 0.5.103 + \frac{8.45^2}{50} = 100 + 51.5 + 1.44 = 152.94.$$

Округляем до четного числа $L_t = 152$.

Уточняем межосевое расстояние цепной передачи по формуле (7.37)

$$a_{tt} = 0.25t \left[L_{t} - 0.5z_{\Sigma} + \sqrt{(L_{t} - 0.5z_{\Sigma})^{2} - 8\Delta^{2}} \right] =$$

$$= 0.25 \cdot 31.75 \left[152 - 0.5 \cdot 103 + \sqrt{(152 - 0.5 \cdot 103)^{2} - 8 \cdot 8.45^{2}} \right] =$$

$$= 7.92 \left[100.5 + \sqrt{100 \cdot 10^{2} - 5.75 \cdot 10^{2}} \right] = 7.92 (100.5 + 96.5) = 1562 \text{ MM}.$$

Для свободного провисания цепи предусматриваем возможность уменьшения межосевого расстояния на 0.4%, т. е. на $1562 \cdot 0.004 \approx 6$ мм.

Определяем диаметры делительных окружностей звездочек [см. формулу (7.34)]

$$d_{\text{g3}} = \frac{t}{\sin \frac{180}{z_3}} = \frac{31,75}{\sin \frac{180}{25}} = 253 \text{ MM};$$

$$d_{\text{M4}} = \frac{t}{\sin \frac{180}{7}} = \frac{31,75}{\sin \frac{180}{78}} = 792 \text{ MM}.$$

Определяем диаметры наружных окружностей звездочек [см. формулу (7.35)]

$$D_{e3} = t \left(\operatorname{ctg} \frac{180}{z_3} + 0.7 \right) - 0.3 d_1 = t \left(\operatorname{ctg} \frac{180}{z_3} + 0.7 \right) - 5.9,$$

где $d_1 = 19,05$ мм — диаметр ролика цепи (см. табл. 7.15);

$$D_{e3} = 31,75 \left(\text{ctg} \ \frac{180}{25} + 0,7 \right) - 5,9 = 267,1 \text{ MM};$$

$$D_{e4} = 31,75 \left(\text{ctg} \ \frac{180}{78} + 0,7 \right) - 5,9 = 806,2 \text{ MM}.$$

Силы, действующие на цепь:

окружная $F_m = 4950 \text{ H} - \text{определена выше};$

от центробежных сил $F_v = qv^2 = 3.8 \cdot 2.56^2 \approx 25$ H, где q = 3.8 кг/м по табл. 7.15;

от провисания $F_f = 9.81k_f q a_n = 9.81 \cdot 1.5 \cdot 3.8 \cdot 1.562 = 88$ H, где $k_f = 1.5$ при угле наклона передачи 45° (см. с. 151).

Расчетная нагрузка на валы

$$F_{\rm B} = F_{\rm m} + 2F_{\rm f} = 4950 + 2 \cdot 88 = 5126 \text{ H}.$$

Проверяем коэффициент запаса прочности цепи [по формуле (7.40)]

$$s = \frac{Q}{F_{tt}k_{tt} + F_{tt} + F_{ft}} = \frac{88.5 \cdot 10^{3}}{4950 \cdot 1 + 25 + 88} = \frac{88500}{5063} = 17.5.$$

Это больше, чем нормативный коэффициент запаса $[s] \approx 9,4$ (см. табл. 7.19); следовательно, условие s > [s] выполнено.

Размеры ведущей звездочки:

ступица звездочки $d_{\rm cr}=1,6\cdot 55=88$ мм; $l_{\rm cr}=(1,2\div 1,6)\,55=66\div 88$ мм; принимаем $l_{\rm cr}=85$ мм;

толщина диска звездочки $0.93B_{\rm BH}=0.93\cdot 19.05\approx 18$ мм, где $B_{\rm BH}-$ расстояние между пластинками внутреннего звена (см. табл. 7.15).

Аналогично определяют размеры ведомой звездочки.

VII. Первый этап компоновки редуктора (рис. 12.6)

Компоновку обычно проводят в два этапа. Первый этап служит для приближенного определения положения зубчатых колес и звездочки относительно опор для последующего определения опорных реакций и подбора подшипников.

Компоновочный чертеж выполняем в одной проекции — разрез по осям валов при снятой крышке редуктора; желательный масштаб 1:1, чертить тонкими линиями.

Примерно посередине листа параллельно его длинной стороне проводим горизонтальную осевую линию; затем две вертикальные линии — оси валов на расстоянии $a_w = 200$ мм.

Вычерчиваем упрощенно шестерню и колесо в виде прямоугольников; шестерня выполнена за одно целое с валом; длина ступицы колеса равна ширине венца и не выступает за пределы прямоугольника.

Очерчиваем внутреннюю стенку корпуса:

- а) принимаем зазор между торцом шестерни и внутренней стенкой корпуса $A_1=1,2\delta;$ при наличии ступицы зазор берется от торца ступицы;
- б) принимаем зазор от окружности вершин зубьев колеса до внутренней стенки корпуса $A = \delta$;
- в) принимаем расстояние между наружным кольцом подшипника ведущего вала и внутренней стенкой корпуса $A = \delta$; если диаметр окружности вершин зубьев шестерни окажется больше наружного диаметра подшипника, то расстояние Aнадо брать от шестерни.

Предварительно намечаем радиальные шарикоподшипники средней серии; габариты подшипников выбираем по диаметру вала в месте посадки подшипников $d_{n1}=40$ мм и $d_{n2}=60$ мм (см. рис. 12.3 и 12.5).

По табл. ПЗ имеем	Ho	абл. П	3 имеем:	:
-------------------	----	--------	----------	---

Условное обозна чение	d	D	В	Грузоподъе	мность, кН
подшипника]	Размеры, м	м	С	C ₀
308 312	40 60	90 130	23 31	41,0 81,9	22,4 48,0

Примечание. Наружный диаметр подшипника $D=90\,$ мм оказался больше диаметра окружности вершин зубьев $d_{a1}=71,66\,$ мм.

Решаем вопрос о смазывании подшипников. Принимаем для подшипников пластичный смазочный материал. Для предотвращения вытекания смазки внутрь корпуса и вымывания пластичного смазочного материала жидким маслом из зоны зацепления устанавливаем мазеудерживающие кольца (см. гл. IX, рис. 9.47). Их ширина определяет размер $y = 8 \div 12$ мм.

Измерением находим расстояния на ведущем валу $l_1 = 78$ мм и на ведомом $l_2 = 82$ мм.

Примем окончательно $l_1 = l_2 = 82$ мм.

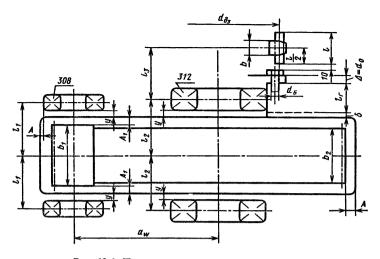
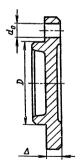


Рис. 12.6. Предварительная компоновка редуктора

Глубина гнезда подшипника $l_{\rm r}\approx 1,5B$; для подшипника 312 B=31 мм; $l_{\rm r}=1,5\cdot 31=46,5$ мм; примем $l_{\rm r}=46$ мм. Толщину фланца Δ крышки подшипника принимают примерно равной диаметру $d_{\rm o}$ отверстия; в этом фланце $\Delta=14$ мм (рис. 12.7). Высоту головки болта примем $0,7d_{\rm f}=14$

Рис. 12.7. Толщина фланца крышки подшипника:

 Pasmepы, MM


 D
 d₀
 Δ

 20-50
 7
 8

 50-65
 9
 10

 65-90
 12
 12

 90-120
 14
 14

 $=0.7\cdot 12=8.4$ мм. Устанавливаем зазор между головкой болта и торцом соединительного пальца цепи в 10 мм. Длину пальца l примем на 5 мм больше шага t. Таким образом, l=t+5=31.75+5=36.75 мм.

Измерением устанавливаем расстояние $l_3=81\,$ мм, определяющее положение звездочки относительно ближайшей опоры ведомого вала. Примем окончательно $l_3=82\,$ мм.

VIII. Проверка долговечности подшипника (см. § 97)

Ведущий вал (рис. 12.8). Из предыдущих расчетов имеем $F_t=3750$ H, $F_r=1400$ H и $F_a=830$ H; из первого этапа компоновки $l_1=82$ мм.

Реакции опор:

в плоскости хг

$$R_{x1} = R_{x2} = \frac{F_t}{2} = \frac{3750}{2} = 1875 \text{ H};$$

в плоскости уг

$$R_{y1} = \frac{1}{2l_1} \left(F_r l_1 + F_a \frac{d_1}{2} \right) =$$

$$= \frac{1}{2 \cdot 82} \left(1400 \cdot 82 + 830 \frac{66,66}{2} \right) = 868 \text{ H};$$

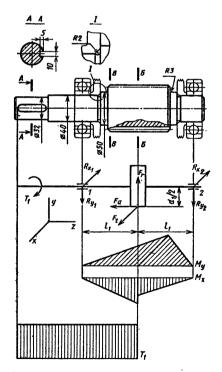


Рис. 12.8. Расчетная схема ведущего вала

$$R_{y2} = \frac{1}{2l_1} \left(F_r l_1 - F_a \frac{d_1}{2} \right) =$$

$$= \frac{1}{2 \cdot 82} \left(1400 \cdot 82 - \frac{66,66}{2} \right) = 532 \text{ H}.$$

Проверка:
$$R_{y1} + R_2 - F_r = 868 + 532 - 1400 = 0$$
. Суммарные реакции

$$P_{r1} = \sqrt{R_{x1}^2 + R_{y1}^2} =$$

= $\sqrt{1875^2 + 868^2} = 2060 \text{ H};$

$$P_{r2} = \sqrt{R_{x2}^2 + R_{y2}^2} =$$

= $\sqrt{1875^2 + 532^2} = 1960 \text{ H}.$

Подбираем подшипники по более нагруженной опоре 1. Намечаем радиальные шариковые подшипники 308 (см. приложение, табл. П3): $d=40\,$ мм; $D=90\,$ мм; $B=23\,$ мм; $C=41.0\,$ кH и $C_0=22.4\,$ кH.

Эквивалентная нагрузка по формуле (9.3)

$$P_{2} = (XVP_{r1} + YP_{a}) K_{6}K_{T},$$

в которой радиальная нагрузка $P_{r1}=2060$ H; осевая нагрузка $P_a=F_a=830$ H; V=1 (вращается внутреннее кольцо); коэффициент безопасности для приводов ленточных конвейеров $K_6=1$ (см. табл. 9.19); $K_T=1$ (см. табл. 9.20).

 $K_6=1$ (см. табл. 9.19); $K_T=1$ (см. табл. 9.20). Отношение $\frac{F_a}{C_0}=\frac{830}{22\,400}=0{,}037$; этой величине (по табл. 9.18) соответствует $e\approx 0{,}23$.

Отношение
$$\frac{P_a}{P_{r1}} = \frac{830}{2060} = 0,403 > e;$$
 $X = 0,56$ и $Y = 1,88.$ $P_a = (0.56 \cdot 2060 + 1.88 \cdot 830) \approx 2700$ H.

Расчетная долговечность, млн. об [формула (9.1)]

$$L = \left(\frac{C}{P_3}\right)^3 = \left(\frac{41,0 \cdot 10^3}{27 \cdot 10^2}\right)^3 \approx 3500$$
 млн. об.

Расчетная долговечность, ч

$$L_h = \frac{L \cdot 10^6}{60n} = \frac{3500 \cdot 10^6}{60 \cdot 974} \approx 60 \cdot 10^3 \text{ y},$$

что больше установленных ГОСТ 16162-85 (см. также с. 307). Ведомый вал (рис. 12.9) несет такие же нагрузки, как, и ведущий:

$$F_t = 3750 \text{ H}, F_r = 1400 \text{ H} \text{ M} F_a = 830 \text{ H}.$$

Нагрузка на вал от цепной передачи $F_{\rm B}=5126~{\rm H.}$ Составляющие этой нагрузки

$$F_{\text{BX}} = F_{\text{BY}} = F_{\text{B}} \sin \gamma = 5126 \sin 45^{\circ} = 3600 \text{ H}.$$

Из первого этапа компоновки $l_2=82$ мм и $l_3=82$ мм. Реакции опор:

в плоскости хг

$$R_{x3} = \frac{1}{2l_2} (F_t l_2 - F_{BX} l_3) =$$

$$= \frac{1}{2 \cdot 82} (3750 \cdot 82 - 3600 \cdot 82) = 75 \text{ H};$$

$$R_{x4} = \frac{1}{2l_2} [F_t l_2 + F_{BX} (2l_2 + l_3)] =$$

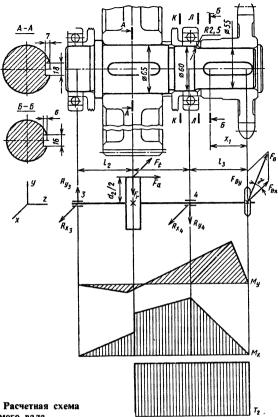


Рис. 12.9. Расчетная схема ведомого вала

$$= \frac{1}{2.82} (3750.82 + 3600.3.82) = 7275 \text{ H}.$$

Проверка: $R_{x3} + R_{x4} - (F_t + F_{BX}) = 75 + 7275 - (3750 + 3600) = 0;$ в плоскости уг

$$R_{y3} = \frac{1}{2l_2} \left(F_r l_2 - F_a \frac{d_2}{2} + F_{By} l_3 \right) = \frac{1}{2 \cdot 82} \left(1400 \cdot 82 - 830 \frac{333,34}{2} + 3600 \cdot 82 \right) = 1675 \text{ H};$$

$$R_{y4} = \frac{1}{2l_2} \left[-F_r l_2 - F_a \frac{d_2}{2} + F_{By} (2l_2 + l_3) \right] = \frac{1}{2} \left[-F_r l_2 - F_a \frac{d_2}{2} + F_{By} (2l_2 + l_3) \right] = \frac{1}{2} \left[-F_r l_2 - F_a \frac{d_2}{2} + F_{By} (2l_2 + l_3) \right] = \frac{1}{2} \left[-F_r l_2 - F_a \frac{d_2}{2} + F_{By} (2l_2 + l_3) \right] = \frac{1}{2} \left[-F_r l_2 - F_a \frac{d_2}{2} + F_{By} (2l_2 + l_3) \right] = \frac{1}{2} \left[-F_r l_2 - F_a \frac{d_2}{2} + F_{By} (2l_2 + l_3) \right] = \frac{1}{2} \left[-F_r l_2 - F_a \frac{d_2}{2} + F_{By} (2l_2 + l_3) \right] = \frac{1}{2} \left[-F_r l_2 - F_a \frac{d_2}{2} + F_{By} (2l_2 + l_3) \right] = \frac{1}{2} \left[-F_r l_2 - F_a \frac{d_2}{2} + F_{By} (2l_2 + l_3) \right] = \frac{1}{2} \left[-F_r l_2 - F_a \frac{d_2}{2} + F_{By} (2l_2 + l_3) \right] = \frac{1}{2} \left[-F_r l_2 - F_a \frac{d_2}{2} + F_{By} (2l_2 + l_3) \right] = \frac{1}{2} \left[-F_r l_2 - F_a \frac{d_2}{2} + F_{By} (2l_2 + l_3) \right] = \frac{1}{2} \left[-F_r l_2 - F_a \frac{d_2}{2} + F_{By} (2l_2 + l_3) \right] = \frac{1}{2} \left[-F_r l_2 - F_a \frac{d_2}{2} + F_{By} (2l_2 + l_3) \right] = \frac{1}{2} \left[-F_r l_2 - F_a \frac{d_2}{2} + F_{By} (2l_2 + l_3) \right] = \frac{1}{2} \left[-F_r l_2 - F_a \frac{d_2}{2} + F_{By} (2l_2 + l_3) \right] = \frac{1}{2} \left[-F_r l_2 - F_a \frac{d_2}{2} + F_{By} (2l_2 + l_3) \right] = \frac{1}{2} \left[-F_r l_2 - F_a \frac{d_2}{2} + F_{By} (2l_2 + l_3) \right] = \frac{1}{2} \left[-F_r l_2 - F_a \frac{d_2}{2} + F_{By} (2l_2 + l_3) \right] = \frac{1}{2} \left[-F_r l_2 - F_a \frac{d_2}{2} + F_{By} (2l_2 + l_3) \right] = \frac{1}{2} \left[-F_r l_2 - F_a \frac{d_2}{2} + F_{By} (2l_2 + l_3) \right] = \frac{1}{2} \left[-F_r l_2 - F_a \frac{d_2}{2} + F_{By} (2l_2 + l_3) \right] = \frac{1}{2} \left[-F_r l_2 - F_a \frac{d_2}{2} + F_{By} (2l_2 + l_3) \right] = \frac{1}{2} \left[-F_r l_2 - F_a \frac{d_2}{2} + F_{By} (2l_2 + l_3) \right] = \frac{1}{2} \left[-F_r l_2 - F_a \frac{d_2}{2} + F_{By} (2l_2 + l_3) \right] = \frac{1}{2} \left[-F_r l_2 - F_a \frac{d_2}{2} + F_b \frac{d_2}{2} + F_b \frac{d_2}{2} + F_b \frac{d_2}{2} \right]$$

$$= \frac{1}{2 \cdot 82} \left(-1400 \cdot 82 - 830 \frac{333,34}{2} + 3600 \cdot 3 \cdot 82 \right) = 3875 \text{ H.}$$

Проверка: $R_{y3} + F_{By} - (F_r + R_{y4}) = 1675 + 3600 - (1400 + 3875) = 0.$

Суммарные реакции

$$P_{r3} = \sqrt{R_{x3}^2 + R_{y3}^2} = \sqrt{75^2 + 1675^2} = 1680 \text{ H};$$

 $P_{r4} = \sqrt{R_{x4}^2 + R_{y4}^2} = \sqrt{7275^2 + 3875^2} = 8200 \text{ H}.$

Выбираем подшипники по более нагруженной опоре 4.

Шариковые радиальные подшипники 312 средней серии (см. табл. П3): d=60 мм; D=130 мм; B=31 мм; C=81.9 кН и $C_0=48.0$ кН.

Отношение $\frac{P_a}{C_0} = \frac{830}{48\,000} = 0,0172$; этой величине (по табл. 9.18) соответствует $e \approx 0,20$ (получаем, интерполируя).

Отношение
$$\frac{P_a}{P_{r4}} = \frac{830}{8200} = 0,105 < e$$
; следовательно, $X = 1$,

Y = 0. Поэтому $P_3 = P_{r4}VK_6K_T = 8200 \cdot 1 \cdot 1.2 \cdot 1 = 9840$ H.

(Примем $K_6 = 1,2$, учитывая, что цепная передача усиливает неравномерность нагружения.)

Расчетная долговечность, млн. об.

$$L = \left(\frac{C}{P_3}\right)^3 = \left(\frac{81900}{9840}\right)^3 \approx 570$$
 млн. об.

Расчетная долговечность, ч

$$L_h = \frac{L \cdot 10^6}{60 \cdot n} = \frac{570 \cdot 10^6}{60 \cdot 194} \approx 50 \cdot 10^3 \text{ y};$$

здесь n = 194 об/мин — частота вращения ведомого вала.

Для зубчатых редукторов ресурс работы подшипников может превышать $36\,000$ ч (таков ресурс самого редуктора), но не должен быть менее $10\,000$ ч (минимально допустимая долговечность подшипника). В нашем случае подшипники ведущего вала 308 имеют ресурс $L_h \approx 60 \cdot 10^3$ ч, а подшипники ведомого вала 312 имеют ресурс $L_h \approx 50 \cdot 10^3$ ч.

IX. Второй этап компоновки редуктора (рис. 12.10)

Второй этап компоновки имеет целью конструктивно оформить зубчатые колеса, валы, корпус, подшипниковые узлы

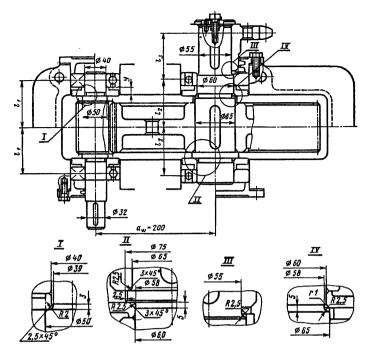


Рис. 12.10. Второй этан компоновки редуктора

и подготовить данные для проверки прочности валов и не-которых других деталей.

Примерный порядок выполнения следующий.

Вычерчиваем шестерню и колесо по конструктивным размерам, найденным ранее (см. п. IV). Шестерню выполняем за одно целое с валом.

Конструируем узел ведущего вала:

- а) наносим осевые линии, удаленные от середины редуктора на расстояние l_1 . Используя эти осевые линии, вычерчиваем в разрезе подшипники качения (можно вычерчивать одну половину подшипника, а для второй половины нанести габариты);
- б) между торцами подшипников и внутренней поверхностью стенки корпуса вычерчиваем мазеудерживающие кольца (см. рис. 9.39). Их торцы должны выступать внутрь корпуса на 1−2 мм от внутренней стенки. Тогда эти кольца будут выполнять одновременно роль маслоотбрасывающих колец. Для уменьшения числа ступеней вала кольца устанавливаем на тот же диаметр, что и подшипники (Ø 40 мм). Фиксация

их в осевом направлении осуществляется заплечиками вала и торцами внугренних колец подшипников;

в) вычерчиваем крышки подшипников (см. рис. 9.31-9.33) с уплотнительными прокладками (толщиной ~ 1 мм) и болтами. Болт условно заводится в плоскость чертежа, о чем свидетельствует вырыв на плоскости разъема.

Войлочные и фетровые уплотнения применяют главным образом в узлах, заполненных пластичной смазкой. Уплотнения манжетного типа широко используют как при пластичных, так и при жидких смазочных материалах (см. § 9.5);

г) переход вала \emptyset 40 к присоединительному концу \emptyset 32 мм выполняют на расстоянии 10-15 мм от торца крышки подшипника так, чтобы ступица муфты не задевала за головки болтов крепления крышки.

Длина присоединительного конца вала Ø 32 мм определяется длиной ступицы муфты.

Аналогично конструируем узел ведомого вала. Обратим внимание на следующие особенности:

- а) для фиксации зубчатого колеса в осевом направлении предусматриваем утолщение валарс одной стороны и установку распорной втулки с другой; место перехода вала от Ø 65 мм к Ø 60 мм смещаем на 2—3 мм внутрь распорной втулки с тем, чтобы гарантировать прижатие мазеудерживающего кольца к торцу втулки (а не к заплечику вала!);
- б) отложив от середины редуктора расстояние l_2 , проводим осевые линии и вычерчиваем подшипники *;
- в) вычерчиваем мазеудерживающие кольца, крышки подшипников с прокладками и болтами;
- г) откладываем расстояние l_3 и вычерчиваем звездочку цепной передачи; ступица звездочки может быть смещена в одну сторону для того, чтобы вал не выступал за пределы редуктора на большую длину.

Переход от \emptyset 60 мм к \emptyset 55 мм смещаем на 2-3 мм внутрь подшипника с тем, чтобы гарантировать прижатие кольца к внутреннему кольцу подшипника (а не к валу!). Это кольцо — между внутренним кольцом подшипника и ступицей звездочки — не допускает касания ступицы и сепаратора подшипника;

д) от осевого перемещения звездочка фиксируется на валу торцовым креплением. Шайба прижимается к торцу ступицы одним или двумя винтами. Следует обязательно предусмот-

^{*} Если нет особых указаний, то можно располагать оси подшипников ведущего и ведомого валов на одной прямой линии.

реть зазор между торцом вала и шайбой в 2-3 мм для натяга.

На ведущем и ведомом валах применяем шпонки призматические со скругленными торцами по ГОСТ 23360-78. Вычерчиваем шпонки, принимая их длины на 5-10 мм меньше длин ступиц.

Непосредственным измерением уточняем расстояния между опорами и расстояния, определяющие положение зубчатых колес и звездочки относительно опор. При значительном изменении этих расстояний уточняем реакции опор и вновь проверяем долговечность подшипников.

Х. Проверка прочности шпоночных соединений

Шпонки призматические со скругленными торцами Размеры сечений шпонок и пазов и длины шпонок — по ГОСТ 23360—78 (см. табл. 8.9).

Материал шпонок - сталь 45 нормализованная.

Напряжения смятия и условие прочности по формуле (8.22)

$$\sigma_{\scriptscriptstyle \mathrm{CM}}^{\mathrm{max}} \approx \frac{2T}{d\left(h-t_1\right)\left(l-b\right)} \leqslant \big[\sigma_{\scriptscriptstyle \mathrm{CM}}\big].$$

Допускаемые напряжения смятия при стальной ступице $[\sigma_{cm}] = 100 \div 120$ МПа, при чугунной $[\sigma_{cm}] = 50 \div 70$ МПа.

Ведущий вал: d=32 мм; $b\times h=10$ х 8 мм; $t_1=5$ мм; длина шпонки l=70 мм (при длине ступицы полумуфты МУВП 80 мм, см. табл. 11.5); момент на ведущем валу $T_1=125\cdot 10^3$ Н·мм;

$$\sigma_{\text{cm}} = \frac{2 \cdot 125 \cdot 10^3}{32 (8 - 5) (70 - 10)} = 43,5 \text{ M}\Pi a < [\sigma_{\text{cm}}]$$

(материал полумуфт МУВП – чугун марки СЧ 20).

Ведомый вал.

Из двух шпонок — под зубчатым колесом и под звездочкой — более нагружена вторая (меньше диаметр вала и поэтому меньше размеры поперечного сечения шпонки). Проверяем шпонку под звездочкой: $d=55\,$ мм; $b\times h=16\times 10\,$ мм; $t_1=6\,$ мм; длина шпонки $l=80\,$ мм (при длине ступицы звездочки 85 мм); момент $T_3=625\cdot 10^3\,$ Н мм;

$$\sigma_{cM} = \frac{2 \cdot 625 \cdot 10^3}{55 (10 - 6) (80 - 16)} = 88 \text{ M}\Pi a < [\sigma_{cM}]$$

(обычно звездочки изготовляют из термообработанных углеродистых или легированных сталей). Условие $\sigma_{cm} < [\sigma_{cm}]$ выполнено.

XI. Уточненный расчет валов

Примем, что нормальные напряжения от изгиба изменяются по симметричному циклу, а касательные от кручения — по отнулевому (пульсирующему).

Уточненный расчет состоит в определении коэффициентов запаса прочности s для опасных сечений и сравнении их с требуемыми (допускаемыми) значениями [s]. Прочность соблюдена при $s \ge [s]$.

Будем производить расчет для предположительно опасных сечений каждого из валов.

Ведущий вал (см. рис. 12.8).

Материал вала тот же, что и для шестерни (шестерня выполнена заодно с валом), т. е. сталь 45, термическая обработка — улучшение.

По табл. 3.3 при диаметре заготовки до 90 мм (в нашем случае $d_{a1}=71,66$ мм) среднее значение $\sigma_{\rm B}=780$ МПа.

Предел выносливости при симметричном цикле изгиба

$$\sigma_{-1} \approx 0.43 \sigma_{\scriptscriptstyle B} = 0.43 \cdot 780 = 335 \text{ M}\Pi a.$$

Предел выносливости при симметричном цикле касательных напряжений

$$\tau_{-1} \approx 0.58 \sigma_{-1} = 0.58 \cdot 335 = 193 \text{ M}\Pi a.$$

Сечение A-A. Это сечение при передаче вращающего момента от электродвигателя через муфту рассчитываем на кручение. Концентрацию напряжений вызывает наличие шпоночной канавки.

Коэффициент запаса прочности

$$s = s_{\tau} = \frac{\tau_{-1}}{\frac{k_{\tau}}{\varepsilon_{\tau}}\tau_{v} + \psi_{\tau}\tau_{m}},$$

где амплитуда и среднее напряжение отнулевого цикла

$$\tau_v = \tau_m = \frac{\tau_{\text{max}}}{2} = \frac{T_1}{2W_{\text{KHETTO}}}.$$

При d=32 мм; b=10 мм; $t_1=5$ мм по табл. 8.5

$$W_{\text{KHETTO}} = \frac{\pi d^3}{16} - \frac{bt_1(d - t_1)^2}{2d} =$$

$$= \frac{3,14 \cdot 32^3}{16} - \frac{10 \cdot 5(32 - 5)^2}{2 \cdot 32} = 5,88 \cdot 10^3 \text{ MM}^3;$$

$$\tau_v = \tau_m = \frac{125 \cdot 10^3}{2 \cdot 5.88 \cdot 10^3} = 10,6 \text{ M}\Pi a.$$

Принимаем $k_\tau=1,68$ (см. табл. 8.5), $\epsilon_\tau\approx 0,76$ (см. табл. 8.8) и $\psi_\tau\approx 0,1$ (см. с. 166).

$$s = s_{\tau} = \frac{193}{\frac{1,68}{0.76} \cdot 10,6 + 0,1 \cdot 10,6} = 7,85.$$

ГОСТ 16162-78 указывает на то, чтобы конструкция редукторов предусматривала возможность восприятия радиальной консольной нагрузки, приложенной в середине посадочной части вала. Величина этой нагрузки для одноступенчатых зубчатых редукторов на быстроходном валу должна быть $2.5 \sqrt{T_{\rm B}}$ при $25 \cdot 10^3~{\rm H\cdot mm} < T_{\rm B} < 250 \cdot 10^3~{\rm H\cdot mm}$.

Приняв у ведущего вала длину посадочной части под муфту равной длине полумуфты l=80 мм (муфта УВП для валов диаметром 32 мм), получим изгибающий момент в сечении A-A от консольной нагрузки $M=2.5\sqrt{125\cdot 10^3}\cdot \frac{80}{2}=$

 $= 35.4 \cdot 10^3 \text{ H} \cdot \text{MM}.$

Коэффициент запаса прочности по нормальным напряжениям

$$s_{\sigma} = \frac{\sigma_{-1}}{\frac{k_{\sigma}}{\varepsilon_{\sigma}}\sigma_{v} + \psi_{\sigma}\sigma_{m}} = \frac{335}{\frac{1,8}{0.87} \cdot 9,7} = 16,6;$$

здесь опущены промежуточные выкладки (аналогичные выкладки см. ниже в расчете ведомого вала на с. 313).

Результирующий коэффициент запаса прочности

$$s = \frac{s_{\sigma}s_{\tau}}{\sqrt{s_{\sigma}^2 + s_{\tau}^2}} = \frac{16.6 \cdot 7.85}{\sqrt{16.6^2 + 7.85^2}} = 7.1$$

получился близким к коэффициенту запаса $s_{\tau} = 7,85$. Это незначительное расхождение свидетельствует о том, что консольные участки валов, рассчитанные по крутящему моменту и согласованные с расточками стандартных полумуфт, оказываются прочными и что учет консольной нагрузки не вносит существенных изменений. Надо сказать и о том, что фактичёское расхождение будет еще меньше, так как посадочная часть вала обычно бывает короче, чем длина полумуфты,

что уменьшает значения изгибающего момента и нормальных напряжений.

Такой большой коэффициент запаса прочности (7,85 или 7,1) объясняется тем, что диаметр вала был увеличен при конструировании для соединения его стандартной муфтой с валом электродвигателя.

По той же причине проверять прочность в сечениях E-E и B-B нет необходимости.

Ведомый вал (см. рис. 12.9).

Материал вала — сталь 45 нормализованная; $\sigma_B = 570$ МПа (см. табл. 3.3).

Пределы выносливости $\sigma_{-1} = 0.43 \cdot 570 = 246$ МПа и $\tau_{-1} = 0.58 \cdot 246 = 142$ МПа.

Сечение A-A. Диаметр вала в этом сечении 65 мм. Концентрация напряжений обусловлена наличием шпоночной канавки (см. табл. 8.5): $k_{\sigma}=1,59$ и $k_{\tau}=1,49$; масштабные факторы $\epsilon_{\sigma}=0,775$; $\epsilon_{\tau}=0,67$ (см. табл. 8.8); коэффициенты $\psi_{\sigma}\approx0,15$ и $\psi_{\tau}\approx0,1$ (см. с. 163 и 166).

Крутящий момент $T_2 = 625 \cdot 10^3 \text{ H} \cdot \text{мм}.$

Изгибающий момент в горизонтальной плоскости (см. рис. 12.9)

$$M' = R_{x3}l_2 = 75.82 = 6.15.10^3 \text{ H} \cdot \text{MM};$$

изгибающий момент в вертикальной плоскости

$$M'' = R_{y3}l_2 + F_a \frac{d_2}{2} = 1675.82 + 830 \frac{333,34}{2} = 275.10^3 \text{ H·mm};$$

суммарный изгибающий момент в сечении А-А

$$M_{A-A} = \sqrt{(6.15 \cdot 10^3)^2 + (275 \cdot 10^3)^2} \approx 276 \cdot 10^3 \text{ H} \cdot \text{MM}.$$

Момент сопротивления кручению (d = 65 мм; b = 18 мм; $t_1 = 7$ мм)

$$W_{\text{KHETTO}} = \frac{\pi d^3}{16} - \frac{bt_1 (d - t_1)^2}{2d} =$$

$$= \frac{3,14 \cdot 65^3}{16} - \frac{18 \cdot 7(65 - 7)^2}{2 \cdot 65} = 50,75 \cdot 10^{3} \text{ MM}^3.$$

Момент сопротивления изгибу (см. табл. 8.5)

$$W_{\text{HETTO}} = \frac{\pi d^3}{32} - \frac{bt_1(d - t_1)^2}{2d} =$$

$$= \frac{3,14 \cdot 65^3}{32} - 3,25 \cdot 10^3 = 23,7 \cdot 10^3 \text{ MM}^3.$$

Амплитуда и среднее напряжение цикла касательных напряжений

$$\tau_v = \tau_m = \frac{T_2}{2W_{\text{KHETTO}}} = \frac{625 \cdot 10^3}{2 \cdot 50,75 \cdot 10^3} = 6,17 \text{ M}\Pi a.$$

Амплитуда нормальных напряжений изгиба

$$\sigma_v = \frac{M_{A-A}}{W_{\text{Herro}}} = \frac{276 \cdot 10^3}{23,7 \cdot 10^3} \approx 11,6 \text{ МПа; среднее напряжение } \sigma_m = 0.$$

Коэффициент запаса прочности по нормальным напряжениям

$$s_{\sigma} = \frac{\sigma_{-1}}{\frac{k_{\sigma}}{\varepsilon_{\sigma}}\sigma_{v} + \psi_{\sigma}\sigma_{m}} = \frac{246}{\frac{1,59}{0,775}} \approx 10,3.$$

Коэффициент запаса прочности по касательным напряжениям

$$s_{\tau} = \frac{\tau_{-1}}{\frac{k_{\tau}}{\varepsilon_{\tau}}\tau_{v} + \psi_{\tau}\tau_{m}} = \frac{142}{\frac{1,49}{0,67}6,17 + 0,1 \cdot 6,17} = 9,9.$$

Результирующий коэффициент запаса прочности для сечения A-A

$$s = \frac{s_{\sigma} s_{\tau}}{\sqrt{s_{\sigma}^2 + s_{\tau}^2}} = \frac{10.3 \cdot 9.9}{\sqrt{10.3^2 + 9.9^2}} \approx 7.2.$$

Сечение K-K. Концентрация напряжений обусловлена посадкой подшипника с гарантированным натягом (см. табл. 8.7); $\frac{k_\sigma}{\epsilon_\sigma}=3,\!40\,$ и $\frac{k_\tau}{\epsilon_\tau}=2,\!44$; принимаем $\psi_\sigma=0,\!15\,$ и $\psi_\tau=0,\!1.$

Изгибающий момент

$$M_4 = F_R l_3 = 5126 \cdot 82 \approx 420 \cdot 10^3 \text{ H} \cdot \text{MM}.$$

Осевой момент сопротивления

$$W = \frac{\pi d^3}{32} = \frac{3.14 \cdot 216 \cdot 10^3}{32} = 21.2 \cdot 10^3 \text{ MM}^3.$$

Амплитуда нормальных напряжений

$$\sigma_v = \sigma_{\text{max}} = \frac{M_4}{W} = \frac{420 \cdot 10^3}{21.2 \cdot 10^3} \approx 20 \text{ M}\Pi\text{a}; \ \sigma_m = 0.$$

Полярный момент сопротивления

$$W_p = 2W = 2 \cdot 21, 2 \cdot 10^3 = 42, 4 \cdot 10^3 \text{ MM}^3.$$

Амплитуда и среднее напряжение цикла касательных напряжений

$$\tau_v = \tau_m = \frac{\tau_{\text{max}}}{2} = \frac{T_2}{2W_p} = \frac{625 \cdot 10^3}{2 \cdot 42, 4 \cdot 10^3} = 7,4 \text{ M}\Pi a.$$

Коэффициент запаса прочности по нормальным напряжениям

$$s_{\sigma} = \frac{\sigma_{-1}}{\frac{k_{\sigma}}{\varepsilon_{\sigma}}\sigma_{v}} = \frac{246}{3,40 \cdot 20} = 3,46.$$

Коэффициент запаса прочности по касательным напряжениям

$$s_{\tau} = \frac{\tau_{-1}}{\frac{k_{\tau}}{\varepsilon_{\tau}}\tau_{v} + \psi_{\tau}\tau_{m}} = \frac{142}{2,44 \cdot 7,4 + 0,1 \cdot 7,4} = 7,60.$$

Результирующий коэффициент запаса прочности для сечения $K\!-\!K$

$$s = \frac{s_{\sigma}s_{\tau}}{\sqrt{s_{\sigma}^2 + s_{\tau}^2}} = \frac{3.46 \cdot 7.60}{\sqrt{3.46^2 + 7.60^2}} \approx 3.2.$$

Сечение J-J. Концентрация напряжений обусловлена переходом от \emptyset 60 мм к \emptyset 55 мм: при $\frac{D}{d}=\frac{60}{55}\approx 1,1$ и $\frac{r}{d}=\frac{2,25}{55}\approx 0,04$ коэффициенты концентрации напряжений $k_{\sigma}=$

u=1,65 и $k_{\tau}=1,19$ (см. табл. 8.2). Масштабные факторы (см. табл. 8.8) $\epsilon_{\sigma}=0,8$; $\epsilon_{\tau}=0,69$.

Внутренние силовые факторы те же, что и для сечения K - K.

Осевой момент сопротивления сечения

$$W = \frac{\pi \cdot 55^3}{32} = 16.5 \cdot 10^3 \text{ MM}^3.$$

Амплитуда нормальных напряжений

$$\sigma_v = \frac{420 \cdot 10^3}{16.5 \cdot 10^3} = 25,4 \text{ M}\Pi a.$$

Полярный момент сопротивления

$$W_p = 2 \cdot 16.5 \cdot 10^3 = 33.0 \cdot 10^3 \text{ Mm}^3.$$

Амплитуда и среднее напряжение цикла касательных напряжений

$$\tau_{\nu} = \tau_{m} = \frac{625 \cdot 10^{3}}{2 \cdot 33.0 \cdot 10^{3}} = 9,50 \text{ M}\Pi a.$$

Коэффициенты запаса прочности

$$s_{\sigma} = \frac{246}{\frac{1,65}{0,80} \cdot 25,4} \approx 4,7$$

$$s_{\tau} = \frac{142}{\frac{1,19}{0,69} \cdot 9,50 + 0,1 \cdot 9,50} = 8,2.$$

Результирующий коэффициент запаса прочности для сечения $\mathcal{J}-\mathcal{J}$

$$s = \frac{4,7 \cdot 8,2}{\sqrt{4,7^2 + 8,2^2}} = 3,9.$$

Сечение Б – Б. Концентрация напряжений обусловлена наличием шпоночной канавки (см. табл. 8.5): $k_{\sigma}=1,59$ и $k_{\tau}=1,49$; $\epsilon_{\sigma}=0,8$ и $\epsilon_{\tau}=0,69$.

Изгибающий момент (положим $x_1 = 60$ мм)

$$M_{\rm B-B} = F_{\rm B} x_1 = 5126 \cdot 60 \approx 307 \cdot 10^3 \, \text{H} \cdot \text{MM}.$$

Момент сопротивления сечения нетто при $b=16\,$ мм и $t_1=6\,$ мм

$$W_{\text{Herto}} = \frac{3,14 \cdot 55^3}{32} - \frac{16 \cdot 6(55 - 6)^2}{2 \cdot 55} = 14,51 \cdot 10^3 \text{ MM}^3.$$

Амплитуда нормальных напряжений изгиба

$$\sigma_v = \frac{M_{\text{B}-\text{B}}}{W_{\text{METTO}}} = \frac{307 \cdot 10^3}{14,51 \cdot 10^3} \approx 21,1 \text{ M}\Pi a.$$

Момент сопротивления кручению сечения нетто

$$W_{\text{к нетто}} = \frac{3,14 \cdot 55^3}{16} - 2,09 \cdot 10^3 = 31,11 \cdot 10^3 \text{ MM}^3.$$

Амплитуда и среднее напряжение цикла касательных напряжений

$$\tau_v = \tau_m = \frac{625 \cdot 10^3}{2 \cdot 31.11 \cdot 10^3} = 10.01 \text{ M}\Pi a.$$

Коэффициенты запаса прочности

$$s_{\sigma} = \frac{246}{\frac{1,59}{0,8} \cdot 21,1} \approx 5,85;$$

$$s_{\tau} = \frac{142!}{\frac{1,49}{0.69} \cdot 10,01 + 0,1 \cdot 10,01} = 6,5.$$

Результирующий коэффициент запаса прочности для сечения $\pmb{E}-\pmb{E}$

$$s = \frac{5,85 \cdot 6,5}{\sqrt{5,85^2 + 6,5^2}} = 4,45.$$

Сведем результаты проверки в таблицу:

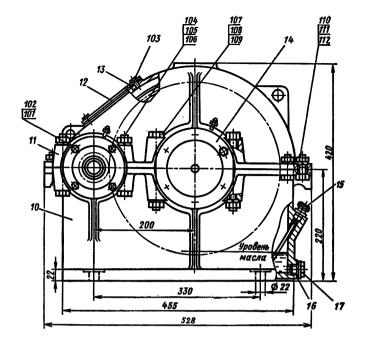
Сечение	A-A	К-К	Л-Л	Б-Б
Коэффициент запаса s	7,2	3,2	3,9	4,45

Во всех сечениях s > [s] = 2.5 (стр. 162)

XII. Вычерчивание редуктора

Редуктор вычерчивают в двух проекциях (рис. 12.11) на листе формата A1 (594 \times 841 мм) в масштабе 1:1 с основной надписью и спецификацией (см. с. 319 - 321).

XIII. Посадки зубчатого колеса, звездочки и подшипников


Посадки назначаем в соответствии с указаниями, данными в табл. 10.13.

Посадка зубчатого колеса на вал $\frac{H7}{p6}$ по ГОСТ 25347 – 82.

Посадка звездочки цепной передачи на вал редуктора H7/h6.

Шейки валов под подшипники выполняем с отклонением вала k6. Отклонения отверстий в корпусе под наружные кольца по H7.

Остальные посадки назначаем, пользуясь данными табл. 10.13.

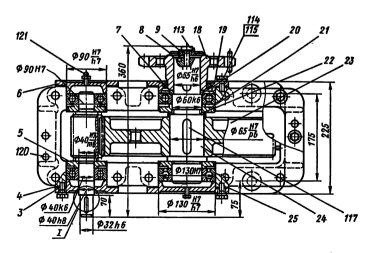
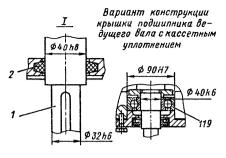
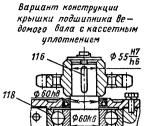




Рис. 12.11. Цилиндрический одноступенчатый зубчатый редуктор

Ø 130H7

Поз.	Обо- зна- чение	Наименова ние	Кол.	Примечание
		Документация		
		Пояснительная записка	1	
		Сборочный чертеж	1	
		Детали		
1		Вал-шестерня ведущий	1	Сталь 45
2 3		Кольцо уплотнительное	1	Войлок
		Крышка подшипника сквозная	1	CH 15
4		Прокладка регулировочная;	2	Сталь 10
		комплект		
5		Кольцо мазеудерживающее	2	Сталь Ст3
6		Крышка подшипника глухая	1	CY 15
7		Кольцо уплотнительное	1	Войлок
8		Шайба торцовая	1	Сталь Ст3
9		Планка стопорная	1	Сталь Ст2
10		Корпус редуктора	1	СЧ 15
11		Крышка корпуса	1	СЧ 15
12		Крышка смотрового окна	1	CH 15
13		Прокладка	1	Картон техни-
				ческий
14		Крышка подшипника глухая	1	СЧ 15
15		Маслоуказатель жезловый	1	Сталь Ст3
16	l	Прокладка	1	Резина масло-
				стойкая
17	l	Пробка	1	Сталь Ст3
18	1	Звездочка ведущая	1	Сталь 40Ж
19		Крышка подшипника сквозная	1	CH 15
20		Кольцо распорное	1	Сталь Ст2

				·
Поз.	Обо- зна- чение	Наименование	Кол.	Примечание
21		Кольцо мазеудерживающее	2	Сталь Ст3
22		Втулка распорная	ī	Сталь Ст2
23		Колесо зубчатое цилиндри-	1	Сталь 45
23		ческое	•	Clasib 43
24		Вал ведомый	i	Сталь 45
25		Прокладка регулировочная;	2	Сталь 10
23		комплект	2	Clasis to
		ROMANICK!		
		Стандартные изделня		
101	l	Болт M10×30.58	8	
101	1	FOCT 7798 – 70*	٥	
102		Шайба пружинная 10	8	
102		FOCT 6402-70*	•	
ı 103	1	Болт М6×20.58	4	
103	l	ГОСТ 7798-70*		
104	1	Болт M16×100.58	4	
1	1	ΓΟCT 7798-70*		
105		Гайка М16.6	4	1
	1	ΓOCT 5915-70*	1	
106	1	Шайба пружинная 16	4	
1	1	ΓΟCT 6402-70*		
107	1	Болт M16×110.58	4	
1		ΓΟCT 7798-70*	١.	
108		Гайка М16.6	4	
1		FOCT 5915-70*		
109	1	Шайба пружинная 16	4	
1		ΓΟCT 6402 – 70 *	4	
110	1	Болт M12 × 30.58	4	
1	1	ГОСТ 7798-70* Гайка M12,6 ГОСТ 5915-70*	4	
111	1		4	
112	1	Шайба пружинная 12 ГОСТ 6402-70*	"	
113	1	Болт M10×32.58	1	
113	1	FOCT 7798-70*	'	
114	1	Болт M12×30.58	12	
'''	1	FOCT 7798-70*	1	
115	1	Шайба пружинная 12	12	
1		ГОСТ 6402-70*		
116		Шпонка 16×10×80	1	
1		ГОСТ 23360-78		
117		Шпонка 18 × 11 × 70	1	
1		ΓΟCT 23360-78	1	1
1			<u></u>	<u></u>

Поз.	Обо- зна- чение	Наимснование				Ко	л.	Примо	еча ние	
118		Подшипник 312 ГОСТ 8338-75					!			
119		Подшипник 308 ГОСТ 8338-75					2			
120		Штифт 10 × 35 ГОСТ 3129 – 70					2			
		Прочне изделия								
121		Пресс-масленка M10×1 ГОСТ 20905-75				4	1			
						означение документа				
Изм.	Лист	№ докум.	Подп.	Дата	по ГОСТ 2.201 –80				υ	
Разра	б				Редук	TOD	Лит.	Лист	Масштаб	
Пров.					косозубый		\prod			
					односту- пенчатый Индекс предпри (учебного заведи		7.7			
Н. контр.							- 1			
Утв.							0.			

XIV. Выбор сорта масла

Смазывание зубчатого зацепления производится окунанием зубчатого колеса в масло, заливаемое внутрь корпуса до уровня, обеспечивающего погружение колеса примерно на 10 мм. Объем масляной ванны V определяем из расчета 0,25 дм³ масла на 1 кВт передаваемой мощности: $V = 0,25 \cdot 12,7 \approx 3,2$ дм³.

По табл. 10.8 устанавливаем вязкость масла. При контактных напряжениях $\sigma_H = 392$ МПа и скорости v = 3,38 м/с рекомендуемая вязкость масла должна быть примерно равна $28 \cdot 10^{-6}$ м²/с. По табл. 10.10 принимаем масло индустриальное И-30A (по ГОСТ 20799 – 75*).

Камеры подшипников заполняем пластичным смазочным материалом УТ-1 (см. табл. 9.14), периодически пополняем его шприцем через пресс-масленки.

XV. Сборка редуктора

Перед сборкой внутреннюю полость корпуса редуктора тщательно очищают и покрывают маслостойкой краской.

Сборку производят в соответствии со сборочным чертежом редуктора, начиная с узлов валов:

на ведущий вал насаживают мазеудерживающие кольца и шарикоподшипники, предварительно нагретые в масле до $80-100\,^{\circ}\mathrm{C}$;

в ведомый вал закладывают шпонку 18 × 11 × 70 и напрессовывают зубчатое колесо до упора в бурт вала; затем надевают распорную втулку, мазеудерживающие кольца и устанавливают шарикоподшипники, предварительно нагретые в масле.

-Собранные валы укладывают в основание корпуса редуктора и надевают крышку корпуса, покрывая предварительно поверхности стыка крышки и корпуса спиртовым лаком. Для центровки устанавливают крышку на корпус с помощью двух конических штифтов; затягивают болты, крепящие крышку к корпусу.

После этого на ведомый вал надевают распорное кольцо, в подшипниковые камеры закладывают пластичную смазку, ставят крышки подшипников с комплектом металлических прокладок для регулировки.

Перед постановкой сквозных крышек в проточки закладывают войлочные уплотнения, пропитанные горячим маслом. Проверяют проворачиванием валов отсутствие заклинивания подшипников (валы должны проворачиваться от руки) и закрепляют крышки винтами.

Далее на конец ведомого вала в шпоночную канавку закладывают шпонку, устанавливают звездочку и закрепляют ее торцовым креплением; винт торцового крепления стопорят специальной планкой.

Затем ввертывают пробку маслоспускного отверстия с прокладкой и жезловый маслоуказатель.

Заливают в корпус масло и закрывают смотровое отверстие крышкой с прокладкой из технического картона; закрепляют крышку болтами.

Собранный редуктор обкатывают и подвергают испытанию на стенде по программе, устанавливаемой техническими условиями.

§ 12.2. РАСЧЕТ ЦИЛИНДРИЧЕСКОГО КОСОЗУБОГО РЕДУКТОРА С КОЛЕСАМИ ИЗ СТАЛИ ПОВЫШЕННОЙ ТВЕРДОСТИ

Проведем этот расчет для того, чтобы показать, как влияет твердость зубьев на размеры редуктора. Все данные для расчета примем такими же, как и в предыдущем примере (см. § 12.1); изменим только материалы, из которых выполнены зубчатые колеса.

ЗАДАНИЕ НА РАСЧЕТ

Рассчитать одноступенчатый горизонтальный цилиндрический косозубый редуктор (см. рис. 12.1 и 12.2) для привода к ленточному конвейеру по следующим данным: вращающий момент на валу колеса $T_2 = 625 \cdot 10^3 \ \text{H} \cdot \text{мм}$; передаточное число редуктора u = 5.

Примем материалы: для шестерни сталь 40ХН, термообработка — объемная закалка до твердости HRC 50; для колеса та же сталь 40ХН, термообработка — объемная закалка до твердости HRC 45 (см. табл. 3.3 и 3.9).

РАСЧЕТ РЕДУКТОРА

Допускаемые контактные напряжения [см. формулу (3.9)]

$$\left[\sigma_{H}\right] = \frac{\sigma_{H \lim b} K_{HL}}{\left[S_{H}\right]}.$$

Предел контактной выносливости при базовом числе циклов для выбранного материала (см. табл. 3.2)

$$\sigma_{H \lim b} = 18HRC + 150.$$

Коэффициент долговечности при длительной эксплуатации редуктора, когда число циклов нагружения больше базового, $K_{KL}=1$; коэффициент безопасности при объемной закалке $[S_H]=1,2.$

Допускаемое контактное напряжение для шестерни

$$[\sigma_{H1}] = \frac{(18HRC + 150) K_{HL}}{[S_H]} = \frac{(18 \cdot 50 + 150) 1}{1.2} = 875 \text{ M}\Pi\text{a};$$

допускаемое контактное напряжение для колеса

$$[\sigma_{H2}] = \frac{(18 \cdot 45 + 150) \, 1}{1.2} = 800 \text{ M}\Pi \text{a.}$$

Для косозубых колес расчетное допускаемое контактное напряжение [см. формулу (3.10)]

$$[\sigma_H] = 0.45 ([\sigma_{H1}] + [\sigma_{H2}]) = 0.45 (875 + 800) = 755 \text{ M}\Pi a.$$

Коэффициент нагрузки для несимметричного расположения зубчатых колес относительно опор (этим мы учитываем натяжение от цепной передачи) при повышенной твердости зубьев по табл. 3.1 примем $K_{HB} = 1,35$.

Коэффициент ширины венца по межосевому расстоянию принимаем $\psi_{ba}=\frac{b}{a_w}=0,250$ (см. с. 36). Для колес повышенной твердости следует принимать значения ψ_{ba} меньшие, чем для колес нормальной твердости. В примере, разобранном выше, для колес нормальной твердости был принят коэффициент $\psi_{ba}=0,4$.

Межосевое расстояние из условия контактной выносливости активных поверхностей зубьев [см. формулу (3.7)]

$$a_w = K_a (u+1) \sqrt[3]{\frac{T_2 K_{H\beta}}{[\sigma_H]^2 u^2 \psi_{ba}}} = 43 (5+1) \sqrt[3]{\frac{625 \cdot 10^3 \cdot 1,35}{755^2 \cdot 5^2 \cdot 0,250}} = 160 \text{ MM}.$$

Примем по ГОСТ 2185-66 (см. с. 36) $a_w = 160$ мм. Напомним, что в примере, разобранном выше, межосевое расстояние было $a_w = 200$ мм.

Нормальный модуль зацепления

$$m_n = (0.01 \div 0.02) a_w = (0.01 \div 0.02) 160 = 1.60 \div 3.20 \text{ MM}.$$

По ГОСТ 9563-60 принимаем $m_n=2$ мм (см. с. 36). Примем предварительно угол наклона зубьев $\beta=10^\circ$ и определим числа зубьев шестерни и колеса:

$$z_1 = \frac{2a_w \cos \beta}{(u+1) m_n} = \frac{2 \cdot 160 \cdot \cos 10^\circ}{(5+1) \cdot 20} = \frac{320 \cdot 0,985}{12} = 26,2;$$

принимаем $z_1 = 26$; тогда $z_2 = z_1 u = 26 \cdot 5 = 130$.

Уточняем значение угла наклона зубьев:

$$\cos \beta = \frac{(z_1 + z_2)m_n}{2a_m} = \frac{(26 + 130)2,0}{2 \cdot 160} = 0,9750; \ \beta = 12^{\circ}50'$$

Основные размеры шестерни и колеса. Делительные диаметры

$$d_1 = \frac{m_n}{\cos \beta} z_1 = \frac{2,0.26}{0.975} = 53,25 \text{ MM};$$

$$d_2 = \frac{m_n}{\cos \beta} z_2 = \frac{2.0 \cdot 130}{0.975} = 266,75 \text{ MM}.$$

Проверка

$$a_w = \frac{d_1 + d_2}{2} = \frac{53,25 + 266,75}{2} = 160$$
 MM.

Диаметры вершин зубьев

$$d_{a1} = d_1 + 2m_n = 53,25 + 2 \cdot 2,0 = 57,25$$
 MM;
 $d_{a2} = d_2 + 2m_n = 266,75 + 2 \cdot 2,0 = 270,75$ MM.

Ширина колеса $b_2 = \psi_{ba} a_w = 0.25 \cdot 160 = 40$ мм.

Ширина шестерни $b_1 = b_2 + 5$ мм = 45 мм.

В примере, разобранном выше, ширина колеса была $b_2 = 80$ мм, а шестерни — $b_1 = 85$ мм.

Коэффициент ширины шестерни по диаметру

$$\psi_{bd} = \frac{b_1}{d_1} = \frac{45}{53,25} = 0.85.$$

Окружная скорость колес

$$v = \frac{\omega_1 d_1}{2} = \frac{101,5 \cdot 53,25}{2 \cdot 10^3} = 2,7$$
 m/c,

где $\omega_1 = 101,5$ рад/с.

При данной скорости и повышенной твердости принимаем 8-ю степень точности (см. с. 32).

Определяем коэффициент нагрузки для проверки контактных напряжений

$$K_H = K_{H\beta} K_{H\alpha} K_{H\nu}.$$

По табл. 3.5 при $\psi_{bd}=0.85$ для несимметричного расположения колес повышенной твердости $K_{H8}=1.23$.

По табл. 3.4 для 8-й степени точности и скорости 2,7 м/с $K_{H\alpha}=1{,}08$.

По табл. 3.6 для косозубых колес при скорости 2,7 м/с и повышенной твердости $K_{H\eta} = 1,0$.

Таким образом,

$$K_H = 1,23 \cdot 1,08 \cdot 1 = 1,325.$$

Проверка контактных напряжений

$$\sigma_H = \frac{270}{a_w} \sqrt{\frac{T_2 K_H (u+1)^3}{b_2 u^2}} =$$

$$=\frac{270}{160}\sqrt{\frac{625\cdot 10^3\cdot 1,325(5+1)^3}{40\cdot 25}}=712\ \mathrm{MHa}<\big[\sigma_H\big].$$

Силы, действующие в зацеплении:

окружная
$$F_t = \frac{2T_2}{d_2} = \frac{2 \cdot 625 \cdot 10^3}{266,75} = 4700 \text{ H};$$

радиальная
$$F_r = F_t \frac{\text{tg } \alpha}{\cos \beta} = 4700 \frac{\text{tg } 20^\circ}{\cos 12^\circ 50'} = 1750 \text{ H};$$

осевая $F_a = F_t \operatorname{tg} \beta = 4700 \operatorname{tg} 12^{\circ} 50^{\circ} \approx 1040 \text{ H}.$

Проверка зубьев на выносливость по напряжениям изгиба [см. формулу (3.25)]

$$\sigma_F = \frac{F_t K_F Y_F Y_\beta K_{F\alpha}}{bm_{-}} \leq [\sigma_F]:$$

Коэффициент нагрузки $K_F = K_{F6}K_{Fn}$ (см. с. 42).

По табл. 3.7 при $\psi_{bd} = 0.85$, несимметричном расположении зубчатых колес относительно опор и повышенной твердости $K_{\rm FB} = 1.31$.

По табл. 3.8 для 8-й степени точности, скорости v=2.7 м/с и повышенной твердости $K_{Fv} = 1,1.$

Таким образом, $K_F = 1.31 \cdot 1.1 \approx 1.45$.

Коэффициент, учитывающий форму зуба, У выбираем в зависимости от эквивалентных чисел зубьев z_{v1} и z_{v2} [см. пояснения к формуле (3.25)]:

для шестерни
$$z_{v1} = \frac{z_1}{\cos^3 \beta} = \frac{26}{0.975^3} \approx 28;$$

для колеса
$$z_{v2} = \frac{z_2}{\cos^3 \beta} = \frac{130}{0.975^3} \approx 140.$$

При этом $Y_{F1} = 3,84$ и $Y_{F2} = 3,60$ (см. с. 42). Допускаемое напряжение

$$\left[\sigma_F\right] = \frac{\sigma_{F \lim b}^0}{\left[S_F\right]}.$$

Знесь по табл. 3.9 для стали 40ХН при объемной закалке предел выносливости при отнулевом цикле изгиба $\sigma_{F\lim b}^0 =$ $= 500 \text{ M}\Pi a.$

Коэффициент безопасности $[S_F] = [S_F]' [S_F]'' = 1,80;$ табл. 3.9 $[S_F]' \approx 1,80$; для поковок и штамповок $[S_F]'' = 1$.

Допускаемые напряжения при расчете на выносливость для шестерни и колеса

$$[\sigma_F] = \frac{500}{1,80} = 278 \text{ M}\Pi a.$$

Находим отношения

$$\frac{[\sigma_F]}{Y_{F1}} = \frac{278}{3,84} = 72 \text{ M}\Pi a;$$

$$\frac{\left[\sigma_F\right]}{Y_{F2}} = \frac{278}{3,60} = 77,5 \text{ M}\Pi a.$$

Дальнейший расчет ведем для зубьев шестерни, так как для нее найденное отношение меньше.

Коэффициент Y_{β} учитывает повышение прочности косых зубьев по сравнению с прямыми [см. пояснения к формуле (3.25)]:

$$Y_{\beta} = 1 - \frac{\beta}{140} = 1 - \frac{12.8}{140} = 0.91.$$

Коэффициент $K_{F\alpha}$ учитывает распределение нагрузки между зубьями. По формуле, приведенной в ГОСТ 21354—75,

$$K_{F\alpha}=\frac{4+(\varepsilon_{\alpha}-1)(n-5)}{4\varepsilon_{\alpha}},$$

где ε_{α} — коэффициент торцового перекрытия и n — степень точности зубчатых колес [см. формулу (3.25) и пояснения к ней].

Примем среднее значение $\epsilon_{\alpha} = 1,5;$ выше была принята 8-я степень точности. Тогда

$$K_{F\alpha} = \frac{4 + (1,5 - 1)(8 - 5)}{4 \cdot 1.5} = 0.92.$$

Проверяем зуб шестерни по формуле (3.25):

$$\sigma_{F1} = \frac{4700 \cdot 1,45 \cdot 3,84 \cdot 0,91 \cdot 0,92}{45 \cdot 2} = 246 \text{ M}\Pi\text{a} < [\sigma_F].$$

§ 12.3. РАСЧЕТ ПРИВОДА С ОДНОСТУПЕНЧАТЫМ ЦИЛИНДРИЧЕСКИМ КОСОЗУБЫМ РЕДУКТОРОМ И КЛИНОРЕМЕННОЙ ПЕРЕДАЧЕЙ

Передача гибкой связью (клиноременная) помещена перед редуктором [в предыдущем примере передача гибкой связью (цепная) располагалась после редуктора. Обратим внимание на то, как это отразится на размерах редуктора].

ЗАДАНИЕ НА РАСЧЕТ

Рассчитать клиноременную передачу и одноступенчатый горизонтальный цилиндрический косозубый редуктор (рис. 12.12)

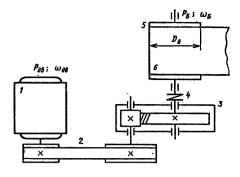


Рис. 12.12. Привод ленточного конвейера с цилиндрическим редуктором и клиноременной передачей:

1 — электродвигатель;
 2 — клиноременная передача;
 3 — одноступенчатый цилиндрический редуктор;
 4 — муфта;
 5 — приводной барабан;
 6 — лента конвейерная

для привода к ленточному конвейеру по следующим данным (они такие же, как и в примере § 12.1): полезная сила на ленте конвейера $F_n = 8,55$ кH; скорость ленты $v_n = 1,3$ м/с; диаметр приводного барабана $D_6 = 400$ мм. Редуктор нереверсивный, предназначен для длительной эксплуатации; работа односменная; валы установлены на подшипниках качения.

РАСЧЕТ ПРИВОДА

I. Выбор электродвигателя и кинематический расчет (рис. 12.13)

По табл. 1.1 коэффициент полезного действия пары цилиндрических зубчатых колес $\eta_1=0.98$; коэффициент, учитывающий потери пары подшипников качения, $\eta_2=0.99$; КПД клиноременной передачи $\eta_3=0.95$; коэффициент, учитывающий потери в опорах приводного барабана, $\eta_4=0.99$.

Общий КПД привода

$$\eta = \eta_1 \eta_2^2 \eta_3 \eta_4 = 0.98 \cdot 0.99^2 \cdot 0.95 \cdot 0.99 = 0.90.$$

Мощность на валу барабана

$$P_6 = F_{\pi} v_{\pi} = 8,55 \cdot 1,3 = 11,1$$
 кВт.

 $\omega_1 = 32,5 \, \rho a \partial / c$
 $z_2 = 130$

aw=280

×

Рис. 12.13. Кинематическая схема привода:

A — вал — электродвигателя; B — 1-й вал редуктора; C — 2-й вал редуктора и вал барабана

Требуемая мощность электродвигателя

$$P_{\rm TP} = \frac{P_6}{\eta} = \frac{11,1}{0,90} = 12,35 \text{ kBT}.$$

Угловая скорость барабана

$$\omega_6 = \frac{2v_n}{D_6} = \frac{2 \cdot 1,3}{0,4} = 6,5 \text{ pag/c}.$$

Частота вращения барабана

$$n_6 = \frac{30\omega_6}{\pi} = \frac{30 \cdot 6.5}{3.14} = 62 \text{ o}6/\text{Muh}.$$

По ГОСТ 19523—81 (см. табл. П1 приложения) по требуемой мощности $P_{\rm тp}=12,35$ кВт выбираем электродвигатель трехфазный асинхронный короткозамкнутый серии 4А закрытый, обдуваемый, с синхронной частотой вращения 1000 об/мин 4А160М6У3 с параметрами $P_{\rm дв}=15,0$ кВт и скольжением 2,6%. Номинальная частота вращения $n_{\rm дв}=1000-26=974$ об/мин,

угловая скорость
$$\omega_{\text{дв}} = \frac{\pi n_{\text{дв}}}{30} = \frac{3,14 \cdot 974}{30} = 101,5 \text{ рад/с.}$$

Передаточное отношение

$$i = \frac{\omega_{AB}}{\omega_6} = \frac{101,5}{6,5} = 15,65.$$

Намечаем для редуктора u=5 (так же, как в примере, разобранном в § 12.1); тогда для клиноременной передачи

$$i_p = \frac{15,65}{5} = 3,14.$$

Угловая скорость и частота вращения ведущего вала редуктора (см. рис. 12.13; вал B)

$$\omega_1 = \omega_6 u = 6.5 \cdot 5 = 32.5$$
 рад/с; $n_1 = n_6 u = 62 \cdot 5 = 310$ об/мин.

Частоты вращения и угловые скорости валов:

Вал А	n _{дв} = 974 об/мин	ω _{дв} = 101,5 рад/с		
Вал <i>В</i>	_	$ω_1 = 32,5$ pa $π/c$		
Вал С	$n_2 = n_6 = 62$ об/мин	$\omega_2 = \omega_6 = 6.5 \text{ рад/с}$		

II. Расчет клиноременной передачи (см. табл. 7.11)

Исходные данные для расчета: передаваемая мощность $P_{\rm Tp}=12,35~{\rm kBT};$ частота вращения ведущего (меньшего) шкива $n_{\rm дв}=974~{\rm of/muh};$ передаточное отношение $i_{\rm p}=3,14;$ скольжение ремня $\epsilon=0,015.$

- 1. По номограмме на рис. 7.3 в зависимости от частоты вращения меньшего шкива n_1 (в нашем случае $n_1 = n_{\text{дв}} = 974$ об/мин; см. вал A на рис. 12.13) и передаваемой мощности $P = P_{\text{тр}} = 12,35$ кВт принимаем сечение клинового ремня Б.
 - 2. Вращающий момент

$$T = \frac{P}{\omega_{\text{mb}}} = \frac{12,35 \cdot 10^3}{101,5} = 122 \text{ H} \cdot \text{M} = 122 \cdot 10^3 \text{ H} \cdot \text{MM},$$

где $P = 12,35 \cdot 10^3$ Вт.

3. Диаметр меньшего шкива по формуле (7.25)

$$d_1 \approx (3 \div 4) \sqrt[3]{T} = (3 \div 4) \sqrt[3]{122 \cdot 10^3} \approx 150 \div 200$$
 mm.

Согласно табл. 7.8 с учетом того, что диаметр шкива для ремней сечения \mathbf{F} не должен быть менее 125 мм, принимаем $d_1=180$ мм.

4. Диаметр большего шкива [см. формулу (7.3)]

$$d_2 = i_0 d_1 (1 - \varepsilon) = 3.14 \cdot 180 (1 - 0.015) = 557$$
 MM.

Принимаем $d_2 = 560$ мм (см. с. 133).

5. Уточняем передаточное отношение

$$i_p = \frac{d_2}{d_1(1-\varepsilon)} = \frac{560}{180(1-0.015)} = 3.16.$$

При этом угловая скорость вала В будет

$$\omega_{\rm B} = \frac{\omega_{\rm дB}}{i_{\rm p}} = \frac{101.5}{3.16} = 32.1$$
 рад/с:

Расхождение с тем, что было получено по первоначальному расчету, $\frac{32,5-32,1}{32,5}\cdot 100\%=1,23\%$, что менее допускаемого на $\pm 3\%$.

Следовательно, окончательно принимаем диаметры шкивов $d_1 = 180\,$ мм и $d_2 = 560\,$ мм.

6. Межосевое расстояние a_p следует принять в интервале [см. формулу (7.26)]

$$a_{\min} = 0.55 (d_1 + d_2) + T_0 = 0.55 (380 + 560) + 10.5 = 420 \text{ MM};$$

$$a_{\text{max}} = d_1 + d_2 = 180 + 560 = 740 \text{ MM},$$

где $T_0 = 10,5$ мм (высота сечения ремня по табл 7.7).

Принимаем предварительно близкое значение $a_p = 800$ мм.

7. Расчетная длина ремня по формуле (7.7)

$$L = 2a_{p} + 0.5\pi (d_{1} + d_{2}) + \frac{(d_{2} - d_{1})^{2}}{4a_{p}} =$$

$$= 2 \cdot 800 + 0.5 \cdot 3.14 (180 + 560) + \frac{(560 - 180)^{2}}{4 \cdot 800} =$$

$$= 1600 + 1160 + \frac{380^{2}}{3200} = 2802 \text{ MM}.$$

Ближайшее значение по стандарту (см. табл. 7.7) L = 2800 мм.

8. Уточненное значение межосевого расстояния a_p с учетом стандартной длины ремня L [см. формулу (7.27)]

$$a_p = 0.25 [(L-w) + \sqrt{(L-w)^2 - 2y}],$$

где
$$w = 0.5\pi (d_1 + d_2) = 0.5 \cdot 3.14 (180 + 560) = 1160$$
 мм; $y = (d_2 - d_1)^2 = (560 - 180)^2 = 14.6 \cdot 10^4$; $a_1 = 0.25 \lceil (2800 - 1160) + \sqrt{(2800 - 1160)^2 - 2 \cdot 14.6 \cdot 10^4} \rceil = 797$ мм.

При монтаже передачи необходимо обеспечить возможность уменьшения межосевого расстояния на $0.01L = 0.01 \cdot 2800 = 28$ мм для облегчения надевания ремней на шкивы и возможность увеличения его на $0.025L = 0.025 \cdot 2800 = 70$ мм для увеличения натяжения ремней.

9. Угол обхвата меньшего шкива по формуле (7.28)

$$\alpha_1 = 180^\circ - 57 \frac{d_2 - d_1}{a_2} = 180^\circ - 57 \frac{560 - 180}{797} = 153^\circ.$$

 Коэффициент режима работы, учитывающий условия эксплуатации передачи, по табл. 7,10:

для привода к ленточному конвейеру при односменной работе $C_{\rm n}=1,0.$

11. Коэффициент, учитывающий влияние длины ремня по табл. 7.9:

для ремня сечения Б при длине L=2800 мм коэффициент $C_L=1{,}05$.

12. Коэффициент, учитывающий влияние угла обхвата [см. пояснения к формуле (7.29)]: при $\alpha_1 = 153^\circ$ коэффициент $C_\alpha \approx 0.93$.

13. Коэффициент, -учитывающий число ремней в передаче [см. пояснения к формуле (7.29)]: предполагая, что число ремней в передаче будет от 4 до 6, примем коэффициент $C_z = 0.90$.

14. Число ремней в передаче по формуле (7.29)

$$z = \frac{PC_{\mathfrak{p}}}{P_0 C_L C_{\alpha} C_z},$$

где P_0 — мощность, передаваемая одним клиновым ремнем, кВт (см. табл. 7.8); для ремня сечения Б при длине L=2240 мм, работе на шкиве $d_1=180$ мм и $i\geqslant 3$ мощность $P_0=3.9$ кВт (то, что в нашем случае ремень имеет другую длину L=2800 мм, учитывается коэффициентом C_L);

$$z = \frac{12,35 \cdot 1}{3,9 \cdot 1,05 \cdot 0.93 \cdot 0.9} \approx 3,6.$$

Принимаем z=4.

15. Натяжение ветви клинового ремня по формуле (7.30)

$$F_0 = \frac{350PC_pC_L}{zvC_\alpha} + \theta v^2,$$

где скорость $v=0.5\omega_{\rm лв}d_1=0.5\cdot 101.5\cdot 180\cdot 10^{-3}=9.15$ м/с; $\theta-$ коэффициент, учитывающий влияние центробежных сил [см. пояснения к формуле (7.30)]; для ремня сечения Б коэффициент

$$\theta = 0.18 \frac{H \cdot c^{2^{2}}}{M^{2}}.$$

Тогда

$$F_0 = \frac{850 \cdot 12,35 \cdot 1 \cdot 1,05}{4 \cdot 9,15 \cdot 0.93} + 0,18 \cdot 9,15^2 = 339 \text{ H}.$$

16. Давление на валы по формуле (7.31)

$$F_{\rm B} = 2F_0 z \sin \frac{\alpha_1}{2} = 2 \cdot 339 \cdot 4 \sin 76^{\circ} 30' = 2620 \text{ H}.$$

17. Ширина шкивов $B_{\rm m}$ (см. табл. 7.12)

$$B_{\text{III}} = (z-1)e + 2f = (4-1)19 + 2 \cdot 12,5 = 82$$
 MM.

III. Расчет зубчатых колес редуктора

Выбираем материалы для зубчатых колес такие же, как в § 12.1. Для шестерни сталь 45, термообработка — улучшение, твердость HB 230; для колеса сталь 45, термообработка — улучшение, твердость HB 200.

Допускаемое контактное напряжение для косозубых колес из указанных материалов $[\sigma_H] = 410 \, \mathrm{MHz}$.

Примем такой же, как и ранее, коэффициент ширины венца $\psi_{ba}=0,4.$

Коэффициент $K_{H\beta}$, учитывающий неравномерность распределения нагрузки по ширине венца, примем по табл. 3.1. Несмотря на симметричное расположение колес относительно опор (см. рис. 12.13), примем значение этого коэффициента, как в случае несимметричного расположения колес, так как со стороны клиноременной передачи действует сила давления на ведущий вал, вызывающая его деформацию и ухудшающая контакт зубьев: $K_{H\beta} = 1,25$.

Мощность на валу барабана (он же ведомый вал редуктора) $P_6 = P_2 = 11,1\,$ кВт (см. рис. 12.13 и пункт I расчета). Найдем вращающий момент на этом валу

$$T_2 = \frac{P_2}{\omega_2} = \frac{11.1 \cdot 10^3}{6.5} = 1700 \text{ H} \cdot \text{M}.$$

Межосевое расстояние из условия контактной выносливости активных поверхностей зубьев по формуле (3.7)

$$a_{w} = K_{a}(u+1) \sqrt[3]{\frac{T_{2}K_{H\beta}}{\left[\sigma_{H}^{2}\right]^{2}u^{2}\psi_{ba}}} = 43(5+1) \sqrt[3]{\frac{1700 \cdot 10^{3} \cdot 1,25}{410^{2} \cdot 5^{2} \cdot 0,4}} = 277 \text{ mm,}$$

где $K_a = 43$ — для косозубых колес; u = 5 — принято ранее для рассматриваемого редуктора.

Ближайшее значение межосевого расстояния по ГОСТ 2185-66 $a_w=280$ мм (см. с. 36).

Нормальный модуль

$$m_n = (0.01 \div 0.02) a_w = (0.01 \div 0.02) 280 = 2.8 \div 5.6 \text{ MM};$$

принимаем по ГОСТ $9563-60 \ m_n=3.5 \ \text{мм}$.

Примем предварительно угол наклона зубьев $\beta = 10^{\circ}$. Число зубьев шестерни [см. формулу (3.12)]

$$z_1 = \frac{2a_w \cos \beta}{(u+1)m_n} = \frac{2 \cdot 280 \cos 10^\circ}{(5+1)3,5} = 26,2;$$

принимаем $z_1 = 26$. Тогда $z_2 = z_1 u = 26 \cdot 5 = 130$.

Уточняем значение угла наклона зубьев:

$$\cos \beta = \frac{(z_1 + z_2) m_n}{2a_w} = \frac{(26 + 130) 3.5}{2 \cdot 280} = 0.9750;$$

угол $\beta = 12^{\circ}50'$.

Основные размеры шестерни и колеса. Диаметры делительные

$$d_1 = \frac{m_n}{\cos \beta} z_1 = \frac{3.5}{0.975} 26 = 93.3 \text{ MM};$$

$$d_2 = \frac{m_n}{\cos \beta} z_2 = \frac{3.5}{0.975} 130 = 466.7 \text{ MM}.$$

Проверка:
$$a_w = \frac{d_1 + d_2}{2} = \frac{93.3 + 466.7}{2} = 280^{\circ}$$
 мм.

Диаметры вершин зубьев

$$d_{a1} = d_1 + 2m_n = 93.3 + 2 \cdot 3.5 = 100.3$$
 MM;
 $d_{a2} = d_2 + 2m_n = 466.7 + 2 \cdot 3.5 = 473.7$ MM.

Ширина колеса $b_2 = \psi_{ba}a_w = 0,4 \cdot 280 = 112$ мм; ширина шестерни $b_1 = b_2 + 5$ мм = 117 мм.

Коэффициент ширины шестерни по диаметру

$$\psi_{bd} = \frac{b_1}{d_1} = \frac{117}{93,3} = 1,25.$$

Окружная скорость колес

$$v = \frac{\omega_1 d_1}{2} = \frac{32,5 \cdot 93,3}{2 \cdot 10^3} = 1,52 \text{ M/c}.$$

Степень точности передачи: для косозубых колес при скорости до 10 м/с следует принять 8-ю степень точности.

Коэффициент нагрузки

$$K_H = K_{H\beta} K_{H\alpha} K_{H\nu}.$$

По табл. 3.5 при $\psi_{bd}=1,25$, твердости HB<350 и несимметричном расположении колес (учет натяжения клиноременной передачи) коэффициент $K_{HB}\approx1,165$.

По табл. 3.4 при v = 1,52 м/с и 8-й степени точности коэффициент $K_{H\alpha} \approx 1,065$.

По табл. 3.6 для косозубых колес при скорости менее 5 м/с коэффициент $K_{H_R} = 1,0$.

Таким образом, $K_H = 1,165 \cdot 1,065 \cdot 1,0 = 1,242$.

Проверяем контактные напряжения по формуле (3.6):

$$\sigma_H = \frac{270}{a_w} \sqrt{\frac{T_2 K_H (u+1)^3}{b_2 u^2}} = \frac{270}{280} \sqrt{\frac{1700 \cdot 10^3 \cdot 1,242 \cdot 6^3}{112 \cdot 5^2}} = 387 \text{ M}\Pi\text{a},$$

что менее $[\sigma_H] = 410$ МПа. Условие прочности выполнено.

Силы, действующие в зацеплении:

окружная
$$F_t = \frac{2T_2}{d_2} = \frac{2 \cdot 1700 \cdot 10^3}{466.7} = 7280 \text{ H};$$

радиальная
$$F_r = F_t \frac{\text{tg } \alpha}{\cos \beta} = 7280 \frac{\text{tg } 20^\circ}{\cos 12^\circ 50'} = 2720 \text{ H};$$

осевая $F_a = F_t \operatorname{tg} \beta = 7280 \operatorname{tg} 12^{\circ}50' = 1610 \text{ H}.$

Проверим зубья на выносливость по напряжениям изгиба [см. формулу (3.25)]:

$$\sigma_F = \frac{F_t K_F Y_F Y_\beta K_{F\alpha}}{bm_n} \leq [\sigma_F].$$

Коэффициент нагрузки $K_F = K_{F8}K_{Fv}$ (см. с. 42).

По табл. 3.7 при $\psi_{bd}=1,25$, твердости HB<350 и несимметричном расположении зубчатых колес относительно опор коэффициент $K_{F6}\approx 1,32$.

По табл. 3.8 для косозубых колес 8-й степени точности и скорости до 3 м/с коэффициент $K_{F_p} = 1,1$.

Таким образом, $K_F = 1,32 \cdot 1,1 = 1,45$.

Коэффициент; учитывающий форму зуба, Y_F зависит от эквивалентного числа зубьев z_{ν} [см. пояснения к формуле (3.25)];

у шестерни
$$z_{v1} = \frac{z_1}{\cos^3 \beta} = \frac{26}{0.975^3} \approx 28;$$

у колеса
$$z_{v2} = \frac{z_2}{\cos^3 \beta} = \frac{130}{0.975^3} \approx 140.$$

Коэффициенты $Y_{F1} = 3,84$ и $Y_{F2} = 3,60$ (см. с. 42).

Определяем коэффициенты Y_{β} и $K_{F\alpha}$ [см. пояснения к формуле (3.25)]:

$$Y_{\beta} = 1 - \frac{\beta^{\circ}}{140} = 1 - \frac{12,8}{140} = 0.91;$$

$$K_{F\alpha} = \frac{4 + (\epsilon_{\alpha} - 1)(n - 5)}{4\epsilon_{\alpha}} = \frac{4 + (1,5 - 1)(8 - 5)}{4 \cdot 1.5} = 0.92,$$

где средние значения коэффициента торцового перекрытия ε_{α} = = 1,5; степень точности n = 8.

Допускаемое напряжение при проверке на изгиб определяют по формуле (3.24):

$$\left[\sigma_F\right] = \frac{\sigma_{F \lim b}^0}{\left[S_F\right]}.$$

По табл. 3.9 для стали 45 улучшенной предел выносливости при отнулевом цикле изгиба $\sigma_{F \lim b}^0 = 1,8$ HB.

Для шестерни $\sigma_{F \lim b}^{o} = 1.8 \cdot 230 = 415$ МПа; для колеса $\sigma_{F \lim b}^{o} = 1.8 \cdot 200 = 360$ МПа.

Коэффициент безопасности $[S_F] = [S_F]' [S_F]''$ [см. пояснения к формуле (3.24)].

По табл. $3.9 [S_F]' = 1,75$ для стали 45 улучшенной; коэффициент $[S_F]'' = 1$ для поковок и штамповок. Следовательно, $[S_F] = 1,75$.

Допускаемые напряжения:

для шестерни
$$\left[\sigma_{F1}\right] = \frac{415}{1,75} = 237 \text{ M}\Pi a;$$

для колеса
$$[\sigma_{F2}] = \frac{360}{1,75} = 206$$
 МПа.

Проверку на изгиб следует проводить для того зубчатого колеса, для которого отношение $\frac{[\sigma_F]}{Y_F}$ меньше. Найдем эти отношения:

для шестерни
$$\frac{237}{3,84} \doteq 62$$
 МПа;

для колеса
$$\frac{206}{3,60} = 57,5$$
 МПа.

Проверку на изгиб проводим для колеса [см. формулу (3.25)]:

$$\sigma_{F2} = \frac{F_t K_F Y_F Y_{\beta} K_{F\alpha}}{b_2 m_n} =$$

$$= \frac{7280 \cdot 1,45 \cdot 3,60 \cdot 0,91 \cdot 0,92}{112 \cdot 3,5} = 82 \text{ M}\Pi a < 206 \text{ M}\Pi a.$$

Условие прочности выполнено.

IV. Предварительный расчет валов редуктора и выбор подшипников

Предварительный расчет валов, как уже было указано, проводят на кручение, принимая пониженные допускаемые напряжения.

Ведущий вал (см. рис. 12.13; вал В).

Вращающий момент
$$T_1 = \frac{T_2}{u} = \frac{1700}{5} = 340 \text{ H} \cdot \text{м}.$$

Допускаемое напряжение на кручение примем $[\tau_{\kappa}] = 20 \text{ M}\Pi a$. Это невысокое значение принято с учетом того, что ведущий вал испытывает изгиб от натяжения клиноременнои передачи.

Определим диаметр выходного конца вала [см. формулу (8.16)]. Конструктивно ведущий вал будет напоминать вал,

изображенный на рис. 12.3, но размеры его будут другими; там на выходной конец вала насаживалась полумуфта, а в нашем случае — шкив клиноременной передачи:

$$d_{\rm B1} = \sqrt[3]{\frac{16T_1}{\pi \left[\tau_{\rm K}\right]}} = \sqrt[3]{\frac{16 \cdot 340 \cdot 10^3}{3,14 \cdot 20}} = 44,2 \text{ MM}.$$

Принимаем ближайшее большее значение из стандартного ряда [см. пояснения к формуле (8.16)] $d_{\rm el} = 45$ мм.

Диаметр вала под подшипниками принимаем $d_{\pi 1} = 50$ мм. В е д о м ы й в а л (см. рис. 12.13; вал C).

Вращающий момент $T_2 = 1700 \, \text{H} \cdot \text{м}$.

Допускаемое напряжение на кручение $[\tau_{\kappa}] = 25$ МПа [см. пояснения к формуле (8.16)].

Определяем диаметр выходного конца вала. Конструктивно ведомый вал будет напоминать вал, изображенный на рис. 12.5. Там на выходной конец вала насаживалась звездочка цепной передачи, а в нашем случае — полумуфта:

$$d_{\rm B2} = \sqrt[3]{\frac{16T_2}{\pi \left[\tau_{\rm K}\right]}} = \sqrt[3]{\frac{16 \cdot 1700 \cdot 10^3}{3,14 \cdot 25}} = 70,2 \text{ MM}.$$

Принимаем ближайшее большее значение из стандартного ряда $d_{\rm p2} = 75\,$ мм.

Диаметр вала под подшипниками принимаем $d_{n2}=80$ мм. Примем радиальные шарикоподшипники средней серии; габариты подшипников выбираем по диаметру вала в месте посадки подшипников $d_{n1}=50$ мм и $d_{n2}=80$ мм. По табл. П3 имеем:

Условное обозначение	d	D	В	
подшипника	Размеры, мм			
310 316	50 80	110 170	27 39	

Мы провели два расчета редукторов в приводах по одинаковым данным: в § 12.1 (см. рис. 12.1) цепная передача была установлена после редуктора, а в § 12.3 (см. рис. 12.12) клиноременная передача установлена перед редуктором. Поэтому угловые скорости валов редуктора во втором случае были меньше, чем в первом, а вращающие моменты — больше.

Сравним результаты расчетов:

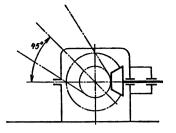
Расчетный параметр, мм	См. § 12.1	См. § 12.3	
Межосевое расстояние a_w	200	280	
Диаметры делительные:	66,66 333,34	93,3 466,7	
Модуль нормальный <i>т</i> _п	2,5	3,5	
Ширина колес: b ₂ b ₁	80 85	112 117	
Диаметры выходных концов валов: $d_{\rm B1}$ $d_{\rm B2}$	32 55	45 75	
Диаметры валов под подшипники: $d_{ m nl} \ d_{ m n2}$	40 60	50 80	

Как показывает это сравнение, все параметры второго редуктора оказались больше, чем первого.

Дальнейший расчет, вопросы компоновки, проверка прочности валов и долговечности подшипников редуктора проводятся аналогично тому, как это было проделано в § 12.1.

§ 12.4. ПРОЕКТИРОВАНИЕ ПРИВОДА С ОДНОСТУПЕНЧАТЫМ КОНИЧЕСКИМ ПРЯМОЗУБЫМ РЕДУКТОРОМ И ЦЕПНОЙ ПЕРЕДАЧЕЙ

ЗАДАНИЕ НА ПРОЕКТИРОВАНИЕ


Спроектировать одноступенчатый горизонтальный конический прямозубый редуктор и цепную передачу для привода к ленточному конвейеру (рис. 12.14). Исходные данные те же, что и в примере § 12.1: полезная сила на ленте конвейера $F_n = 8,55$ кH; скорость ленты $v_n = 1,3$ м/с; диаметр барабана $D_6 = 400$ мм. Редуктор нереверсивный, предназначен для длительной эксплуатации; работа односменная; валы установлены на подшипниках качения.

РАСЧЕТ И КОНСТРУИРОВАНИЕ

І. Выбор электродвигателя и кинематический расчет

По табл. 1.1 примем:

КПД пары конических зубчатых колес $\eta_1 = 0.97$;

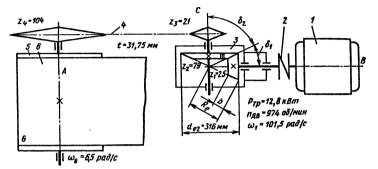


Рис. 12.14. Привод ленточного конвейера с коническим редуктором и цепной передачей:

I — электродвигатель; 2 — муфта; 3 — одноступенчатый редуктор; 4 — цепная передача; 5 — приводной барабан; 6 — лента конвейерная; A — вал барабана; B — вал электродвигателя и 1-й вал редуктора; C — 2-й вал редуктора

коэффициент, учитывающий потери пары подшипников качения, $\eta_2=0.99$;

КПД открытой цепной передачи $\eta_3 = 0.92$;

коэффициент, учитывающий потери в опорах вала приводного барабана, $\eta_4 = 0.99$.

Общий КПД привода

$$\eta = \eta_1 \eta_2^2 \eta_3 \eta_4 = 0.97 \cdot 0.99^2 \cdot 0.92 \cdot 0.99 = 0.869.$$

Мощность на валу барабана $P_6 = F_{\pi} v_{\pi} = 8,55 \cdot 1,3 = 11,1$ кВт. Требуемая мощность электродвигателя

$$P_{\tau p} = \frac{P_6}{n} = \frac{11,1}{0.869} = 12,8 \text{ kBt.}$$

Угловая скорость барабана

$$\omega_6 = \frac{2v_{\text{st}}}{D_6} = \frac{2 \cdot 1.3}{0.4} = 6.5 \text{ pag/c}.$$

Частота вращения барабана

$$n_6 = \frac{30\omega_6}{\pi} = \frac{30 \cdot 6.5}{3.14} = 62 \text{ ob/Muh.}$$

По табл. П1 приложения по требуемой мощности $P_{\rm TP}=$ = 12,8 кВт выбираем такой же электродвигатель, как и в примере § 12.1: трехфазный короткозамкнутый серии 4A закрытый обдуваемый с синхронной частотой вращения 1000 об/мин 4A 160 M6 У3 с параметрами $P_{\rm дв}=15,0$ кВт и скольжением 2,6% (ГОСТ 19523—81). Номинальная частота вращения $n_{\rm дв}=1000-26=974$ об/мин ($\omega_{\rm дв}=\frac{\pi n_{\rm дв}}{30}=\frac{3,14\cdot974}{30}=101,5$ рад/с).

Общее передаточное отношение привода

$$i = \frac{\omega_{AB}}{\omega_6} = \frac{101.5}{6.5} = 15.65.$$

Частные передаточные числа можно принять для редуктора по ГОСТ 12289 – 76 (см. с. 49) $u_p = 3,15$; тогда для цепной передачи $u_u = \frac{15,65}{3.15} = 4,97$.

Частоты вращения и угловые скорости валов редуктора и приводного барабана:

Вал <i>В</i>	$n_1 = n_{\text{дв}} = 974$ об/мин	$\omega_1 = \omega_{\text{дв}} = 101,5$ рад/с		
Вал С	$n_2 = \frac{n_1}{u_p} = \frac{974}{3,15} = 306 \text{ ob/MBH}$	$\omega_2 = \frac{\omega_1}{u_p} = \frac{101,5}{3,15} = 32,2 \text{ pag/c}$		
Вал А	n ₆ = 62 об/мин	ω ₆ = 6,5 рад/с		

Вращающие моменты:

на валу шестерни

$$T_1 = \frac{P_1}{\omega_1} = \frac{P_{rp}}{\omega_1} = \frac{12.8 \cdot 10^3}{101.5} = 126 \text{ H} \cdot \text{M} = 126 \cdot 10^3 \text{ H} \cdot \text{MM};$$

на валу колеса

$$T_2 = T_1 u_p = 126 \cdot 10^3 \cdot 3{,}15 = 400 \cdot 10^3 \text{ H} \cdot \text{MM}.$$

II. Расчет зубчатых колес редуктора

Методику расчета, формулы и значения коэффициентов см. § 3.4.

Примем для шестерни и колеса одну и ту же марку стали с различной термообработкой (полагая, что диаметр заготовки шестерни не превысит 120 мм).

По табл. 3.3 принимаем для шестерни сталь 40X улучшенную с твердостью HB 270; для колеса сталь 40X улучшенную с твердостью HB 245.

Допускаемые контактные напряжения [по формуле (3.9)]

$$[\sigma_H] = \frac{\sigma_{H \lim b} K_{HL}}{[S_H]} = \frac{560 \cdot 1}{1,15} = 485 \text{ M}\Pi a.$$

Здесь принято по табл. 3.2 для колеса $\sigma_{H \lim b} = 2HB + 70 = 2 \cdot 245 + 70 = 560$ МПа.

При длительной эксплуатации коэффициент долговечности $K_{HL}=1.$

Коэффициент безопасности примем $[S_H] = 1,15$.

Коэффициент $K_{H\beta}$ при консольном расположении шестерни — $K_{H\beta}=1,35$ (см. табл. 3.1).

Коэффициент ширины венца по отношению к внешнему конусному расстоянию $\psi_{bR_e}=0,285$ (рекомендация ГОСТ 12289 – 76).

Внешний делительный диаметр колеса [по формуле (3.29)]

$$d_{e2} = K_d \sqrt[3]{\frac{T_2 K_{H\beta} u}{[\sigma_H]^2 (1 - 0.5 \psi_{bR_e})^2 \psi_{bR_e}}};$$

в этой формуле для прямозубых передач $K_d = 99$; передаточное число $u = u_p = 3,15$;

$$d_{e2} = 99 \sqrt[3]{\frac{400 \cdot 10^3 \cdot 1,35 \cdot 3,15}{485^2 (1 - 0.5 \cdot 0.285)^2 \cdot 0.285}} = 319 \text{ MM}.$$

Принимаем по ГОСТ 12289 – 76 ближайшее стандартное значение $d_{e2} = 315$ мм (см. с. 49).

Примем число зубьев шестерни $z_1 = 25$.

Число зубьев колеса

$$z_2 = z_1 u = 25 \cdot 3.15 = 78.75.$$

Примем $z_2 = 79$. Тогда

$$u = \frac{z_2}{z_1} = \frac{79}{25} = 3,16.$$

Отклонение от заданного $\frac{3,16-3,15}{3,15}\cdot 100=0,32\%$, что мень-

ше установленных ГОСТ 12289-76 3 %.

Внешний окружной модуль

$$m_e = \frac{d_{e2}}{z_2} = \frac{315}{79} = 3,98 \text{ MM} \approx 4 \text{ MM}$$

(округлять m_e до стандартного значения для конических колес не обязательно).

Уточняем значение

$$d_{e2} = m_e z_2 = 4.79 = 316$$
 MM.

Отклонение от стандартного значения составляет $\frac{316-315}{315} \cdot 100 = 0.32 \%$, что допустимо, так как менее допускаемых 2 %.

Углы делительных конусов

$$\operatorname{ctg} \delta_1 = u = 3.16; \ \delta_1 = 17^{\circ}34';$$

$$\delta_2 = 90^{\circ} - \delta_1 = 90^{\circ} - 17^{\circ}34' = 72^{\circ}26'.$$

Внешнее конусное расстояние R_e и длина зуба b:

$$R_e = 0.5 m_e \sqrt{z_1^2 + z_2^2} = 0.5 \cdot 4 \sqrt{25^2 + 79^2} = 166$$
 mm;
 $b = \psi_{bR} R_e = 0.285 \cdot 166 \approx 47.3$ mm.

Принимаем b = 48 мм.

Внешний делительный диаметр шестерни

$$d_{e1} = m_e z_1 = 4 \cdot 25 = 100$$
 MM.

Средний делительный диаметр шестерни

$$d_1 = 2 (R_e - 0.5b) \sin \delta_1 =$$

= 2 (166 - 0.5 · 48) sin 17°34′ = 85.77 MM.

Внешние диаметры шестерни и колеса (по вершинам зубьев)

$$d_{ae1} = d_{e1} + 2m_e \cos \delta_1 = 100 + 2 \cdot 4 \cdot \cos 17^{\circ}34' = 107,62 \text{ MM};$$

 $d_{ae2} = d_{e2} + 2m_e \cos \delta_2 = 316 + 2 \cdot 4 \cdot \cos 72^{\circ}26' = 318,41 \text{ MM}.$

Средний окружной модуль

$$m = \frac{d_1}{z_1} = \frac{85,77}{25} = 3,43$$
 MM.

Коэффициент ширины шестерни по среднему диаметру

$$\psi_{bd} = \frac{b}{d_1} = \frac{48}{85,77} = 0,56.$$

Средняя окружная скорость колес

$$v = \frac{\omega_1 d_1}{2} = \frac{101,5 \cdot 85,77}{2} = 4,35 \text{ M/c}.$$

Для конических передач обычно назначают 7-ю степень точности.

Для проверки контактных напряжений определяем коэффициент нагрузки:

$$K_H = K_{H8}K_{H\alpha}K_{H\nu}$$
.

По табл. 3.5 при $\psi_{bd} = 0,56$, консольном расположении колес и твердости HB < 350 коэффициент, учитывающий распределение нагрузки по длине зуба, $K_{HB} = 1,23$.

Коэффициент, учитывающий распределение нагрузки между прямыми зубьями, $K_{H\alpha} = 1.0$ (см. табл. 3.4).

Коэффициент, учитывающий динамическую нагрузку в зацеплении, для прямозубых колес при $v \le 5$ м/с $K_{Hv} = 1{,}05$ (см. табл. 3.6).

Таким образом, $K_H = 1,23 \cdot 1,0 \cdot 1,05 = 1,30$.

Проверяем контактное напряжение по формуле (3.27):

$$\sigma_{H} = \frac{335}{R_{e} - 0.5b} \sqrt{\frac{T_{2}K_{H}\sqrt{(u^{2} + 1)^{3}}}{bu^{2}}} =$$

$$= \frac{335}{166 - 0.5 \cdot 48} \sqrt{\frac{400 \cdot 10^{3} \cdot 1.30\sqrt{(3.16^{2} + 1)^{3}}}{48 \cdot 3.16^{2}}} \approx$$

$$\approx 470 < [\sigma_{H}] = 485 \text{ MHa.}$$

Силы в зацеплении:

окружная
$$F_t = \frac{2T_1}{d_1} = \frac{2 \cdot 126 \cdot 10^3}{85,77} = 2940$$
 H;

радиальная для шестерни, равная осевой для колеса,

 $F_{r1} = F_{a2} = F_t \operatorname{tg} \alpha \cos \delta_1 = 2940 \cdot \operatorname{tg} 20^\circ \cdot \cos 17^\circ 34' \approx 1020 \text{ H};$ осевая для шестерни, равная радиальной для колеса,

$$F_{a1} = F_{r2} = F_r \lg \alpha \sin \delta_1 = 2940 \cdot \lg 20^\circ \cdot \sin 17^\circ 34' \approx 322 \text{ H}.$$

Проверка зубъев на выносливость по напряжениям изгиба [см. формулу (3.31)]:

$$\sigma_F = \frac{F_t K_F Y_F}{\vartheta_F bm} \leq [\sigma_F].$$

Коэффициент нагрузки $K_F = K_{F\beta}K_{F\nu}$

По табл. 3.7 при $\psi_{bd}=0,56$, консольном расположении колес, валах на роликовых подшипниках и твердости HB<350 значения $K_{FB}=1,38$.

По табл. 3.8 при твердости HB < 350, скорости v = 4,35 м/с и 7-й степени точности $K_{Fv} = 1,45$ (значение взято для 8-й степени точности в соответствии с указанием на с. 53).

Итак, $K_F = 1,38 \cdot 1,45 = 2,00$.

 Y_F — коэффициент формы зуба выбираем в завненмести от эквивалентных чисел зубьев:

для шестерни
$$z_{v1} = \frac{z_1}{\cos \delta_1} = \frac{25}{\cos 17^\circ 34'} \approx 26;$$

для колеса $z_{v2} = \frac{z_2}{\cos \delta_2} = \frac{79}{\cos 72^\circ 26'} \approx 262.$

При этом $Y_{F1} = 3,88$ и $Y_{F2} = 3,60$ (см. с. 42).

Допускаемое напряжение при проверке зубьев на выносливость по напряжениям изгиба

$$\left[\sigma_F\right] = \frac{\sigma_{F \lim b}^0}{\left[S_F\right]}.$$

По табл. 3.9 для стали 40X улучшенной при твердости $HB < 350 \, \sigma_{Flimb}^0 = 1.8 \, HB$.

Для шестерни $\sigma_{F \lim b1}^0 = 1,8 \cdot 270 \approx 490$ МПа; для колеса $\sigma_{F \lim b2}^0 = 1,8 \cdot 245 = 440$ МПа.

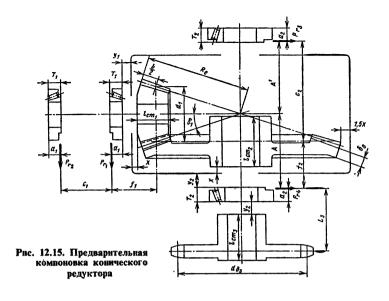
Коэффициент запаса прочности $[S_F] = [S_F]' [S_F]''$. По табл. 3.9 $[S_F]' = 1,75$; для поковок и штамповок $[S_F]'' = 1$. Таким образом, $[S_F] = 1,75 \cdot 1 = 1,75$.

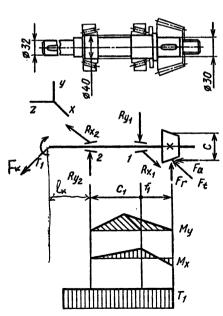
Допускаемые напряжения при расчете зубьев на выносливость:

для шестерни
$$[\sigma_{F1}] = \frac{490}{1,75} = 280$$
 МПа;
для колеса $[\sigma_{F2}] = \frac{440}{1,75} = 250$ МПа.

Для шестерни отношение
$$\frac{\left[\sigma_{Fi}\right]}{Y_{F1}} = \frac{280}{3.88} = 72.4$$
 МПа; для колеса $\frac{\left[\sigma_{F2}\right]}{Y_{F2}} = \frac{250}{3.60} = 69.9$ МПа.

Дальнейший расчет ведем для зубьев колеса, так как полученное отношение для него меньше.


Проверяем зуб колеса:


$$\sigma_{F2} = \frac{2940 \cdot 2,00 \cdot 3,60}{0,85 \cdot 48 \cdot 3,43} \approx 151 \text{ MHa} < [\sigma_{F2}] = 250 \text{ MHa}.$$

ІІІ. Предварительный расчет валов редуктора

Расчет выполняем на кручение по пониженным допускаемым напряжениям.

Крутящие моменты в поперечных сечениях валов: ведущего $T_{\text{k1}} = T_1 = 126 \cdot 10^3 \text{ H} \cdot \text{мм}$; ведомого $T_{\text{k2}} = T_{\text{k1}} u = 126 \cdot 10^3 \cdot 3,16 = 400 \cdot 10^3 \text{ H}$ мм

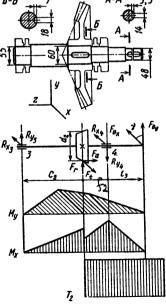


Рис. 12.17. Расчетная схема ведомого вала

Ведущий вал (рис. 12.15 и 12.16).

Диаметр выходного конца при допускаемом напряжении $[\tau_{\kappa}] = 25 \ \text{М}\Pi \text{a}^{-1}$

$$d_{\rm B1} = \sqrt[3]{\frac{T_{\rm K1}}{0.2 \, [\tau_{\rm K}]}} = \sqrt[3]{\frac{126 \cdot 10^3}{0.2 \cdot 25}} = 29,4 \, \, {\rm MM}.$$

Чтобы ведущий вал редуктора можно было соединить с помощью МУВП с валом электродвигателя $d_{\rm nB}=42$ мм, принимаем $d_{\rm nf}=32$ мм.

Диаметр под подшипниками примем $d_{n1} = 40$ мм; диаметр под шестерней $d_{n1} = 30$ мм.

Ведомый вал (рис. 12.17).

Диаметр выходного конца вала $d_{\rm B2}$ определяем при меньшем $\left[\tau_{\kappa}\right]=20\,$ МПа, чем учитываем влияние изгиба от натяжения цепи:

$$d_{\rm B2} = \sqrt[3]{\frac{T_{\rm K2}}{0.2 \, [\tau_{\rm K}]}} = \sqrt[3]{\frac{400 \cdot 10^3}{0.2 \cdot 20}} = 46.5 \, \text{mm}.$$

Примем $d_{\rm B2}=48$ мм; диаметр под подпипниками $d_{\rm H2}=55$ мм, под зубчатым колесом $d_{\rm K2}=60$ мм.

IV. Конструктивные размеры шестерни и колеса

Шестерня (см. рис. 10.4 и рис. 12.16).

Сравнительно небольшие размеры шестерни по отношению к диаметру вала позволяют не выделять ступицу.

Длина посадочного участка (назовем его по аналогии $l_{\rm cr}$) $l_{\rm cr} \approx b = 48$ мм; примем $l_{\rm cr} = 50$ мм.

Колесо.

Коническое зубчатое колесо кованое (см. рис. 10.4, a и табл. 10.1).

Его размеры: $d_{ae2} = 318,41$ мм; $b_2 = 48$ мм.

Диаметр ступицы $d_{\rm cr}\approx 1,6d_{\rm k2}=1,6\cdot 60\approx 95$ мм; длина ступицы $l_{\rm cr}=(1,2\div 1,5)\,d_{\rm k2}=(1,2\div 1,5)\,60=72\div 90\,$ мм; принимаем $l_{\rm cr}=80\,$ мм.

Толщина обода $\delta_o = (3 \div 4) \, m = (3 \div 4) \, 4 = 12 \div 16$ мм; принимаем $\delta_o = 15$ мм.

Толщина диска $C=(0,1\div 0,17)R_e=(0,1\div 0,17)$ 166 = 16,6 ÷ 28 мм; принимаем C=20 мм.

V. Конструктивные размеры корпуса редуктора (см. рис. 10.18 и табл. 10.2 и 10.3)

Толщина стенок корпуса и крышки

$$\delta = 0.05R_e + 1 = 0.05 \cdot 166 + 1 = 9.3$$
 мм; принимаем $\delta = 10$ мм. $\delta_1 = 0.04R_e + 1 = 0.04 \cdot 166 + 1 = 7.6$ мм; принимаем $\delta_1 = 8$ мм.

Толщина фланцев (поясов) корпуса и крышки:

верхнего пояса корпуса и пояса крышки:

$$b = 1.5\delta = 1.5 \cdot 10 = 15$$
 MM;
 $b_1 = 1.5\delta_1 = 1.5 \cdot 8 = 12$ MM;

нижнего пояса корпуса

$$p = 2,35\delta = 2,35 \cdot 10 = 23,5$$
 мм; принимаем $p = 24$ мм.
 Лиаметры болтов:

фундаментных $d_1 = 0.055R_e + 12 = 0.055 \cdot 166 + 12 = 21$ мм; принимаем фундаментные болты с резьбой M20;

болтов, крепящих крышку к корпусу у подшипника, $d_2 = (0.7 \div 0.75) d_1 = (0.7 \div 0.75) 20 = 14 \div 15$ мм; принимаем болты с резьбой М16:

болтов, соединяющих крышку с корпусом, $d_3 = (0.5 \div 0.6) d_1 = (0.5 \div 0.6) 20 = 10 \div 12$ мм; принимаем болты с резьбой M12.

VI. Расчет параметров цепной передачи

Полный расчет цепной передачи проведен в § 12.1. Здесь же определим лишь те параметры, которые нужны для дальнейшего расчета привода.

Методику расчета, формулы и значения коэффициентов см. гл. VII; выбираем приводную роликовую однорядную цепь.

Вращающий момент на ведущей звездочке

$$T_3 = T_2 = 400 \cdot 10^3 \text{ H} \cdot \text{MM}.$$

Передаточное число цепной передачи $u_n = 4,97$.

Число зубьев ведущей звездочки $z_3 = 31 - 2u_n = 31 - 2 \cdot 4,97 \approx 21.$

Число зубьев ведомой звездочки $z_4=z_3u_{\rm u}=21\cdot 4,97=104,37.$ Принимаем $z_4=104.$

Тогда

$$u_{\rm u} = \frac{104}{21} = 4.95$$

Отклонение
$$\frac{4,97-4,95}{4,97} \cdot 100 = 0,4\%$$
, что допустимо.

Расчетный коэффициент нагрузки [см. формулу (7.38)] примем таким же, как в примере § 12.1, $K_3 = 1,25$ (см. с. 299).

Шаг однорядной цепи

$$t \geqslant 2.8 \sqrt[3]{\frac{T_3 K_3}{z_3 [p]}}.$$

При $n_2 = 306$ об/мин по табл. 7.18 принимаем среднее значение допускаемого давления в шарнирах цепи [p] = 20 МПа. Тогда

$$t \ge 2.8$$
 $\sqrt[3]{\frac{400 \cdot 10^3 \cdot 1,25}{21 \cdot 20}} \approx 30$ mm.

Принимаем по табл. 7.15 цепь с шагом t=31,75 мм; Q=88,50 кH; q=3,8 кг/м; $A_{\rm on}=262$ мм 2 (ГОСТ 13568-75). Скорость цепи

$$v = \frac{z_3 t n_2}{60 \cdot 10^3} = \frac{21 \cdot 31,75 \cdot 306}{60 \cdot 10^3} = 3,41 \text{ M/c}.$$

Окружная сила

$$F_{tu} = \frac{P_2}{v} = \frac{T_2 \omega_2}{v} = \frac{400 \cdot 32,2}{3,41} = 3800 \text{ H}.$$

Проверяем давление в шарнире: по формуле (7.39) $p=\frac{F_{ttt}K_3}{A_{on}}=\frac{3800\cdot 1,25}{262}=18,1$ МЛа; уточняем по табл. 7.18 допускаемое давление $[p]=19\left[1+0,01\left(21-17\right)\right]\approx 20$ МЛа; условие $p\leqslant [p]$ выдержано.

Межосевое расстояние

$$a_{ii} = 50t = 50 \cdot 31,75 = 1588 \text{ MM} = 1,588 \text{ M}.$$

Силы, действующие на цепь:

окружная $F_{tij} = 3800$ H;

от центробежных сил $F_v = qv^2 = 3,8 \cdot 3,41^2 \approx 44$ H;

от провисания цепи [см. с. 154) при $k_f = 1,5;$ q = 3.8 кг/м;

$$F_f = 9.81k_f q a_u = 9.81 \cdot 1.5 \cdot 3.8 \cdot 1.588 \approx 89$$
 H.

Расчетная нагрузка на валы

$$F_{\rm B} = F_{\rm tu} + 2F_{\rm f} = 3800 + 2 \cdot 89 = 3978 \text{ H}.$$

Диаметры ведущей звездочки: делительной окружности

$$d_{n3} = \frac{t}{\sin \frac{180^{\circ}}{z_3}} = \frac{31,75}{\sin \frac{180^{\circ}}{21}} = 211 \text{ mm};$$

наружной окружности

$$D_{e3} = t \left(\operatorname{ctg} \frac{180^{\circ}}{z_3} + 0.7 \right) - 0.3d_1 =$$

$$= 31.75 \left(\operatorname{ctg} \frac{180^{\circ}}{21} + 0.7 \right) - 0.3 \cdot 19.05 = 226.3 \text{ MM},$$

где $d_1 = 19,05$ — диаметр ролика (см. табл. 7.15).

Проверяем коэффициент запаса цепи на растяжение по формуле (7.40):

$$s = \frac{Q}{F_m k_n + F_n + F_f} = \frac{88.5 \cdot 10^3}{3800 \cdot 1 + 44 + 89} \approx 22.5;$$

это больше, чем требуемый коэффициент запаса [s] = 9,4 (см. табл. 7.19); следовательно, условие $s \ge [s]$ выполнено.

Размеры ведущей звездочки:

Ступица звездочки $d_{\text{cr3}}=1,6\cdot 48=78$ мм; $l_{\text{cr3}}=(1,2\div 1,5)48=58\div 72$ мм; принимаем $l_{\text{cr3}}=70$ мм.

Толщина диска звездочки $0.93B_{\rm BH}=0.93\cdot 19.05=18$ мм, где $B_{\rm BH}=19.05$ мм — расстояние между пластинами внутреннего звена (см. табл. 7.15).

VII. Первый этап компоновки редуктора (см. рис. 12.15)

Цель и порядок компоновки изложены в § 12.1.

Выбираем способ смазывания: зацепление зубчатой пары — окунанием зубчатого колеса в масло; для подшипников пластичный смазочный материал. Раздельное смазывание принято потому, что один из подшипников ведущего вала удален, и это затрудняет попадание масляных брызг. Кроме того, раздельная смазка предохраняет подшипники от попадания вместе с маслом частип металла.

Камеры подшипников отделяем от внутренней полости корпуса мазеудерживающими кольцами.

Устанавливаем возможность размещения одной проекции — разрез по осям валов — на листе формата A1 (594 × 841 мм). Предпочтителен масштаб 1:1. Проводим посередине листа горизонтальную осевую линию — ось ведущего вала. Намечаем

положение вертикальной линии — оси ведомого вала. Из точки пересечения проводим под углом $\delta_1=17^\circ34'$ осевые линии делительных конусов и откладываем на них отрезки $R_e=166$ мм.

Конструктивно оформляем по найденным выше размерам шестерню и колесо. Вычерчиваем их в зацеплении. Ступицу колеса выполняем несимметричной относительно диска, чтобы уменьшить расстояние между опорами ведомого вала.

Подшипники валов расположим в стаканах.

Намечаем для валов роликоподшипники конические однорядные легкой серии (см. табл. П7):

Условное обозначение подшипника	d	D	T	С	C ₀ ·	
	мм		кН		e	
7208	40	80	20	46,5	32,5	0,38
7211	55	100	23	65	46	0,41

Наносим габариты подшипников ведущего вала, наметив предварительно внутреннюю стенку корпуса на расстоянии $x=10\,$ мм от торца шестерни и отложив зазор между стенкой корпуса и торцом подшипника $y_1=15\,$ мм (для размещения мазеудерживающего кольца).

При установке радиально-упорных подшипников необходимо учитывать, что радиальные реакции считают приложенными к валу в точках пересечения нормалей, проведенных к серединам контактных площадок (см. табл. 9.21). Для однорядных конических роликоподшипников по формуле (9.11)

$$a_1 = \frac{T_1}{2} + \frac{(d_1 + D_1)e_1}{6} = \frac{20}{2} + \frac{(40 + 80)0,38}{6} \approx 18 \text{ mm}.$$

Размер от среднего диаметра шестерни до реакции подшипника $f_1 = 55 + 18 = 73$ мм.

Принимаем размер между реакциями подшипников ведущего вала $c_1 \approx (1.4 \div 2.3) f_1 = (1.4 \div 2.3) 73 = 102 \div 168$ мм. Примем $c_1 = 120$ мм.

Размещаем подшипники ведомого вала, наметив предварительно внутреннюю стенку корпуса на расстоянии x=10 мм от торца ступицы колеса и отложив зазор между стенкой корпуса и торцом подшипника $y_2=20$ мм (для размещения мазеудерживающего кольца).

Для подшипников 7211 размер $a_2 = \frac{23}{2} + \frac{(55 + 100)0,41}{6} \approx$ ≈ 22 мм.

Определяем замером размер A — от линии реакции подшипника до оси ведущего вала. Корпус редуктора выполним симметричным относительно оси ведущего вала и примем размер A' = A = 115 мм. Нанесем габариты подшипников веломого вала.

Замером определяем расстояния $f_2 = 71$ мм и $c_2 = 159$ мм (следует обратить внимание на то, что $A' + A = c_2 + f_2$).

Очерчиваем контур внутренней стенки корпуса, отложив зазор между стенкой и зубьями колеса, равный 1,5x, т. е. 15 мм.

Намечаем положение звездочки (на расстоянии y_2 от торца подшипника) и замеряем расстояние от линии реакции ближнего к ней подшипника $l_3 = 100$ мм.

VIII. Проверка долговечности подшипников

Ведущий вал (см. рис. 12.16).

Силы, действующие в зацеплении: $F_t = 2940$ H; $F_{r1} = F_{a2} = 1020$ H и $F_{a1} = F_{r2} = 322$ H.

Первый этап компоновки дал $f_1 = 73$ мм и $c_1 = 120$ мм.

Реакции опор (левую опору, воспринимающую внешнюю осевую силу F_a , обозначим индексом «2»).

В плоскости хг

$$R_{x2}c_1 = F_t f_1;$$

$$R_{x2} = F_t \frac{f_1}{c_1} = 2940 \frac{78}{120} = 1790 \text{ H};$$

$$R_{x1}c_1 = F_t (c_1 + f_1);$$

$$R_{x1} = F_t \frac{c_1 + f_1}{c_1} = 2940 \frac{193}{120} = 4730 \text{ H}.$$

Проверка: $R_{x2} - R_{x1} + F_t = 1790 - 4730 + 2940 = 0$. В плоскости уz

$$-R_{y2}c_1 + F_r f_1 - F_a \frac{d_1}{2} = 0;$$

$$R_{y2} = \frac{1020 \cdot 73 - 322 \frac{85,77}{2}}{120} = 505 \text{ H};$$

$$-R_{y1}c_1 + F_r (c_1 + f_1) - F_a \frac{d_1}{2} = 0;$$

$$R_{y1} = \frac{1020 \cdot 193 - 13800}{120} = 1525 \text{ H}.$$

Проверка: $R_{y2} - R_{y1} + F_r = 505 - 1525 + 1020 = 0$. Суммарные реакции

$$P_{r2} = \sqrt{R_{x2}^2 + R_{y2}^2} = \sqrt{1790^2 + 505^2} = 1860 \text{ H};$$

 $P_{r1} = \sqrt{R_{x1}^2 + R_{y1}^2} = \sqrt{4730^2 + 1525^2} = 4970 \text{ H}.$

Осевые составляющие радиальных реакций конических подшипников по формуле (9.9)

$$S_2 = 0.83eP_{r2} = 0.83 \cdot 0.38 \cdot 1860 = 592 \text{ H};$$

 $S_1 = 0.83eP_{r1} = 0.83 \cdot 0.38 \cdot 4970 = 1590 \text{ H};$

здесь для подшипников 7208 параметр осевого нагружения e = 0.38.

Осевые нагрузки подшипников (см. табл. 9.21). В нашем случае $S_1 > S_2$; $F_a > 0$; тогда $P_{a1} = S_1 = 1590$ H; $P_{a2} = S_1 + F_a = 1590 + 322 = 1912$ H.

Рассмотрим левый подшипник.

Отношение $\frac{P_{a2}}{P_{r2}} = \frac{1912}{1860} = 1,03 > e$, поэтому следует учитывать осевую нагрузку.

Эквивалентная нагрузка по формуле (9.3)

$$P_{32} = (XVP_{r2} + YP_{a2}) K_6 K_{\tau};$$

для заданных условий $V=K_6=K_\tau=1$; для конических подшипников при $\frac{P_{a2}}{P_{r2}}>e$ коэффициент. X=0,4 и коэффициент Y=1,565 (см. табл. 9.18 и П7 приложения)

Эквивалентная нагрузка $P_{32} = (0.4 \cdot 1860 + 1.565 \cdot 1912) = 3760 \text{ H} = 3.76 \text{ кH}.$

Расчетная долговечность, млн. об [формула (9.1)]

$$L = \left(\frac{C}{P_{32}}\right)^{\frac{10}{3}} = \left(\frac{C}{P_{32}}\right)^{3} \sqrt[3]{\frac{C}{P_{32}}} = \left(\frac{46.5}{3.76}\right)^{3} \sqrt[3]{\frac{46.5}{3.76}} \approx 4400$$
 млн. об.

Расчетная долговечность, ч

$$L_h = \frac{L \cdot 10^6}{60n} = \frac{4400 \cdot 10^6}{60 \cdot 974} \approx 75\,000$$
 ч,

где n = 974 об/мин — частота вращения ведущего вала. Рассмотрим правый подшипник. Отношение $\frac{P_{a1}}{P_{r1}} = \frac{1590}{4970} = 0.32 < e$, поэтому при подсчете эквивалентной нагрузки осевые силы не учитывают.

Эквивалентная нагрузка

$$P_{21} = V P_{r1} K_6 K_r = 4970 \cdot 1 \cdot 1 \cdot 1 = 4970 \text{ H}.$$

Расчетная долговечность, млн. об.,

$$L = \left(\frac{C}{P_3}\right)^{\frac{10}{3}} = \left(\frac{46,5}{4,97}\right)^3 \sqrt[3]{\frac{46,5}{4,97}} \approx 1740$$
 млн. об.

Расчетная долговечность, ч,

$$L_n = \frac{L \cdot 10^6}{60n} = \frac{1740 \cdot 10^6}{60 \cdot 974} \approx 29\,000$$
 ч.

Найденная долговечность приемлема.

Ведомый вал (см. рис. 12.17).

Из предыдущих расчетов $F_t = 2940$ H; $F_r = 322$ H и $F_a = 1020$ H.

Нагрузка на вал от цепной передачи $F_{\rm B}=3978$ Н (см. с. 348). Составляющие этой нагрузки $F_{\rm Bx}=F_{\rm By}=F_{\rm B}\sin\gamma==3978\cdot\sin45^\circ\approx2800$ Н.

Первый этап компоновки дал $f_2=71\,$ мм, $c_2=159\,$ мм и $l_3=100\,$ мм.

Реакции опор (правую опору, воспринимающую внешнюю осевую силу F_a), обозначим четным индексом цифрой 4 и при определении осевого нагружения этот подшипник будем считать «вторым» (см. табл. 9.21).

Дальнейший расчет аналогичен расчету ведущего вала. Реакшии в плоскости xz:

$$R_{x3} = 2100 \text{ H } \text{H } R_{x4} = 1960 \text{ H}.$$

Реакции в плоскости уг (для их определения следует знать еще средний диаметр колеса $d_2 = mz_2 = 3,43 \cdot 79 = 271$ мм):

$$R_{v3} = 1700 \text{ H } \text{ M } R_{v4} = 4822 \text{ H}.$$

Эквивалентные нагрузки:

$$P_{33} = 3250 \text{ H} = 3,25 \text{ kH} \text{ H} P_{34} = 6250 \text{ H} = 6,25 \text{ kH}$$

Так как в качестве опор ведомого вала применены одинаковые подшипники легкой серии 7211, то долговечность определим для более нагруженного правого подшипника.

Отношение
$$\frac{P_{a4}}{P_{r4}} = \frac{1990}{5200} = 0,354 < e$$
, поэтому осевые силы

не учитываем.

Эквивалентная нагрузка

$$P_{34} = V P_{r4} K_6 K_T = 5200 \cdot 1 \cdot 1, 2 \cdot 1 = 6250 \text{ H} = 6,25 \text{ kH}.$$

Расчетная долговечность, млн. об.

$$L = \left(\frac{C}{P_{94}}\right)^{\frac{10}{3}} = \left(\frac{65}{6,25}\right)^3 \sqrt[3]{\frac{65}{6,25}} \approx 2400$$
 млн. об.

Расчетная долговечность, ч

$$L_{\rm h} = \frac{L \cdot 10^6}{60n} = \frac{2400 \cdot 10^6}{60 \cdot 306} \approx 130 \cdot 10^3 \text{ y};$$

здесь n = 306 об/мин — частота вращения ведомого вала.

Полученная долговечность более требуемой. Подшипники 7211 приемлемы.

IX. Второй этап компоновки редуктора (рис. 12.18)

В развитие первой компоновки здесь вычерчивают валы с насаженными на них деталями; размеры мазеудерживающих колец, установочных гаек и шайб, крышек и уплотнений определяют по таблицам гл. IX; размеры шпонок — по таблицам гл. VIII.

Диаметры участков валов под зубчатые колеса, подшипники и пр. назначают в соответствии с результатами предварительного расчета и с учетом технологических требований на обработку и сборку.

Взаимное расположение подшипников фиксируем распорной втулкой и установочной гайкой М39 × 1,5 с предохранительной шайбой. Толщину стенки втулки назначают $(0,1 \div 0,15) d_n$; принимаем ее равной $0,15 \cdot 40 = 6$ мм.

Сопряжение мазеудерживающего кольца со смежными деталями вынесено на рис. 12.18 (места I и IV). Мазеудерживающие кольца устанавливают так, чтобы они выходили за торец стакана или стенки внутрь корпуса на 1-2 мм.

Подшипники размещаем в стакане, толщина стенки которого $\delta_{\rm cr} = (0.08 \div 0.12) \, D$, где D — наружный диаметр подшипника; примем $\delta_{\rm cr} = 0.12 \cdot 80 \approx 10$ мм.

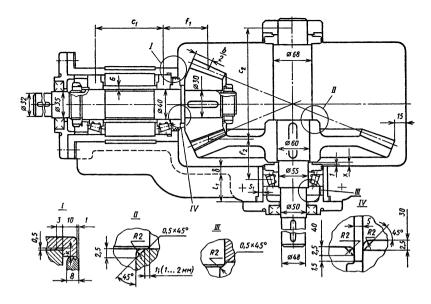


Рис. 12.18. Второй этап компоновки

Для фиксации наружных колец подшипников от осевых перемещений у стакана сделан упор величиной K=6 мм (см. место I).

У второго подшипника наружное кольцо фиксируем торцовым выступом крышки подшипника через распорное кольцо.

Для облегчения посадки на вал подшипника, прилегающего к шестерне, диаметр вала уменьшаем на 0.5-1 мм на длине, несколько меньшей длины распорной втулки.

Очерчиваем всю внутреннюю стенку корпуса, сохраняя величины зазоров, принятых в первом этапе компоновки: x = 10 мм, $y_2 = 20$ мм и др.

Используя расстояния f_2 и c_2 , вычерчиваем подшипники (напомним, что радиальные реакции радиально-упорных подшипников считают приложенными к валу в точках, которые сдвинуты от клейменых торцов подшипников на расстояние a; см. табл. 9.21).

Для фиксации зубчатое колесо упирается с одной стороны в утолщение вала Ø 68 мм (см. рис. 12.18, место II), а с другой — в мазеудерживающее кольцо; участок вала Ø 60 мм делаем короче ступицы колеса, чтобы мазеудерживающее кольцо Ø 55 мм упиралось в торец колеса, а не в буртик вала; переход

вала от \emptyset 60 мм к \emptyset 55 мм смещен на 2-3 мм внутрь зубчатого колеса.

Наносим толщину стенки корпуса $\delta_{\kappa}=10$ мм и определяем размеры основных элементов корпуса (см. гл. X).

Определяем глубину гнезда под подшипник $l_{\rm r}\approx 1,5T_2=1,5\cdot 23=35$ мм ($T_2=23$ мм — щирина подшипника 7211, указанная на с. 350).

Х. Проверка прочности щпоночных соединений

Шпоночные соединения проверяем на смятие так же, как в § 12.1.

Здесь ограничимся проверкой прочности лишь одного соединения, передающего вращающий момент от ведомого вала к звездочке.

Диаметр вала в этом месте $d_{\rm B2}=48$ мм. Сечение и длина шпонки $b\times h\times l=14\times 9\times 63$, глубина паза $t_1=5,5$ мм по ГОСТ 23360-78.

Момент на звездочке $T_3 = 400 \cdot 10^3 \ \text{H} \cdot \text{мм}$.

Напряжение смятия

$$\sigma_{\text{\tiny CM}} = \frac{2T_3}{d_{\text{\tiny B2}}(h - t_1)(l - b)} = \frac{2 \cdot 400 \cdot 10^3}{48(9 - 5.5)(63 - 14)} = 97.5 \text{ M}\Pi\text{a} < [\sigma_{\text{\tiny CM}}].$$

XI. Уточненный расчет валов

Так же, как в примере § 12.1, считаем, что нормальные напряжения от изгиба изменяются по симметричному циклу, а касательные от кручения — по отнулевому (пульсирующему).

Материал валов — сталь 45 нормализованная; $\sigma_{\text{в}} = 570 \text{ M}\Pi \text{a}$ (см. табл. 3.3).

Пределы выносливости $\sigma_{-1} = 0.43 \cdot 570 = 246$ МПа и $\tau_{-1} = 0.58 \cdot 246 = 142$ МПа.

У ведущего вала определять коэффициент запаса прочности в нескольких сечениях нецелесообразно; достаточно выбрать одно сечение с наименьшим коэффициентом запаса, а именно сечение в месте посадки подшипника, ближайшего к шестерне (см. рис. 12.16). В этом опасном сечении действуют максимальные изгибающие моменты M_y и M_x и кругящий момент $T_z = T_1$.

Концентрация напряжений вызвана напрессовкой внутреннего кольца подшипника на вал.

Изгибающие моменты в двух взаимно перпендикулярных плоскостях

$$M_y = R_{x2}c_1 = 1790 \cdot 120 = 215 \cdot 10^3 \text{ H·mm};$$

 $M_x = R_{y2}c_1 = 505 \cdot 120 = 60,5 \cdot 10^3 \text{ H·mm}.$

Суммарный изгибающий момент

$$M = \sqrt{(215 \cdot 10^3)^2 + (60.5 \cdot 10^3)^2} = 225 \cdot 10^3 \text{ H} \cdot \text{MM}.$$

Момент сопротивления сечения

$$W = \frac{\pi d_{\Pi 1}^3}{32} = \frac{3.14 \cdot 40^3}{32} = 6.28 \cdot 10^3 \text{ MM}^3.$$

Амплитуда нормальных напряжений

$$\sigma_v = \sigma_{\text{max}} = \frac{225 \cdot 10^3}{6.28 \cdot 10^3} = 36 \text{ M}\Pi \text{a.}$$

Коэффициент запаса прочности по нормальным напряжениям

$$s_{\sigma} = \frac{\sigma_{-1}}{\frac{k_{\sigma}}{\varepsilon_{-}}\sigma_{v}} = \frac{246}{2,6\cdot36} \approx 2,62.$$

По табл. 8.7

$$\frac{k_{\sigma}}{\varepsilon_{-}}\approx 2.6.$$

Полярный момент сопротивления

$$W_p = \frac{\pi d_{\text{n1}}^3}{16} = 2W = 2 \cdot 6,28 \cdot 10^3 = 12,56 \cdot 10^3 \text{ MM}^3.$$

Амплитуда и среднее напряжение цикла касательных напряжений

$$\tau_v = \tau_m = \frac{\tau_{max}}{2} = \frac{1}{2} \frac{T_1}{W_p} = \frac{126 \cdot 10^3}{2 \cdot 12,56 \cdot 10^3} \approx 5 \text{ M} \, \Pi a.$$

Коэффициент запаса прочности по касательным напряжениям

$$s_{\tau} = \frac{\tau_{-1}}{\frac{k_{\tau}}{\varepsilon_{\tau}}\tau_{v} + \psi_{\tau}\tau_{m}}.$$

По табл. 8.7 $\frac{k_{\tau}}{\varepsilon_{\tau}} = 0.6 \frac{k_{\sigma}}{\varepsilon_{\sigma}} + 0.4 = 0.6 \cdot 2.6 + 0.4 = 1.96$; коэффициент $\psi_{\tau} = 0.1$;

$$s_{\tau} = \frac{142}{1.96 \cdot 5 + 0.1 \cdot 5} = \frac{142}{11.3} = 12,5.$$

Коэффициент запаса прочности

$$s = \frac{s_{\sigma}s_{\tau}}{\sqrt{s_{\sigma}^2 + s_{\tau}^2}} = \frac{2,62 \cdot 12,5}{\sqrt{2,62^2 + 12,5^2}} = 2,55.$$

Для обеспечения прочности коэффициент запаса должен быть не меньше $[s] = 1,5 \div 1,7$. Учитывая требования жесткости, рекомендуют $[s] = 2,5 \div 3,0$. Полученное значение s = 2,55 достаточно.

У ведомого вала следовало бы проверить прочность в сечении под колесом $d_{\rm k2}=60$ мм и под подшипником $d_{\rm n2}=55$ мм со стороны звездочки. Через оба эти сечения передается вращающий момент $T_2=400\cdot 10^3~{\rm H\cdot mm}$, но в сечении под колесом действует изгибающий момент

$$M_{\text{H2}} = \sqrt{(R_{x3}c_2)^2 + (R_{y3}c_2)^2} =$$

$$= \sqrt{(2100 \cdot 159)^2 + (1700 \cdot 159)^2} = 430 \cdot 10^3 \text{ H} \cdot \text{MM},$$

а под подшипником $M_{\rm H3}=F_{\rm B}l_3=3978\cdot 100=397,8\cdot 10^3$ Н·мм. $M_{\rm H2}$ больше $M_{\rm H3}$ всего на 7%, а момент сопротивления W_2 больше W_3 пропорционально $\left(\frac{d_2}{d_3}\right)^3=(60/55)^3=1,30$, т. е. на 30%. Поэтому заключаем, что из этих двух сечений более опасно сечение под подшипником. Для него и проведем расчет.

Изгибающий момент $M_{\rm H3}=397,8\cdot 10^3~{
m H\cdot MM.}$ Момент сопротивления сечения

$$W = \frac{\pi d_{\pi^2}^3}{32} = \frac{3.14 \cdot 55^3}{32} = 16.2 \cdot 10^3 \text{ mm}^3.$$

Амплитуда нормальных напряжений

$$\sigma_v = \sigma_{\text{max}} = \frac{M_{\text{n3}}}{W} = \frac{397.8 \cdot 10^3}{16.2 \cdot 10^3} = 24.5 \text{ M}\Pi \text{a}.$$

Коэффициент запаса прочности по нормальным напряжениям

$$s_{\sigma} = \frac{\sigma_{-1}}{\frac{k_{\sigma}}{\varepsilon_{-}}\sigma_{v}} = \frac{246}{3,4\cdot24,5} = 2,94,$$

где
$$\frac{l_{\cdot \sigma}}{\epsilon_{\sigma}} = 3,40$$
 (см. табл. 8.7).

Полярный момент сопротивления

$$W_p = \frac{\pi d_{\pi^2}^3}{16} = 2W = 2 \cdot 16, 2 \cdot 10^3 = 32, 4 \cdot 10^3 \text{ MM}^3.$$

Амплитуда и среднее напряжение цикла касательных напряжений

$$\tau_v = \tau_m = \frac{\tau_{\text{max}}}{2} = \frac{1}{2} \frac{T_2}{W_p} = \frac{400 \cdot 10^3}{2 \cdot 32, 4 \cdot 10^3} = 6,2 \text{ M}\Pi a.$$

Коэффициент запаса прочности по касательным напряжениям

$$s_{\tau} = \frac{\tau_{-1}}{\frac{k_{\tau}}{\varepsilon_{o}} \tau_{o} + \psi_{\tau} \tau_{m}} = \frac{142}{2,44 \cdot 6,2 + 0,1 \cdot 6,2} = 9,00,$$

где
$$\frac{k_{\tau}}{\varepsilon_{\tau}} = 0.6 \cdot 3.40 + 0.4 = 2.44$$
 (см. табл. 8.7) и $\psi_{\tau} = 0.1$.

Коэффициент запаса прочности

$$s = \frac{s_{\sigma}s_{\tau}}{\sqrt{s_{\sigma}^2 + s_{\tau}^2}} = \frac{2,94 \cdot 9,00}{\sqrt{2,94^2 + 9,00^2}} = 2,80 > [s].$$

XII. Вычерчивание редуктора

Вычерчиваем редуктор в двух проекциях (рис. 12.19) в масштабе 1:1 с основной надписью и спецификацией. Спецификацию составляем аналогично приведенной на с. 319.

Укажем некоторые конструктивные особенности проектируемого редуктора.

Подшипники ведущего вала смонтированы в общем стакане. Рассмотрим, как передается осевая сила. От шестерни осевая сила передается через заплечик вала, мазеудерживающее кольцо, внутреннее кольцо правого подшипника, распорную втулку, левый подшипник, промежуточное кольцо, крышку подшипника и болты. С болтов осевая сила передается на корпус редуктора.

- Подшипниковый узел ведущего вала уплотнен с одной стороны мазеудерживающим кольцом, а с другой — манжетным уплотнением.

Подшипники ведомого вала уплотнены так же, как подшипники ведущего вала. Осевая сила от зубчатого колеса передается через мазеудерживающее кольцо на внутреннее кольцо подшипника, через ролики на наружное кольцо, далее через промежуточную втулку, крышку подшипника и болты на корпус редуктора.

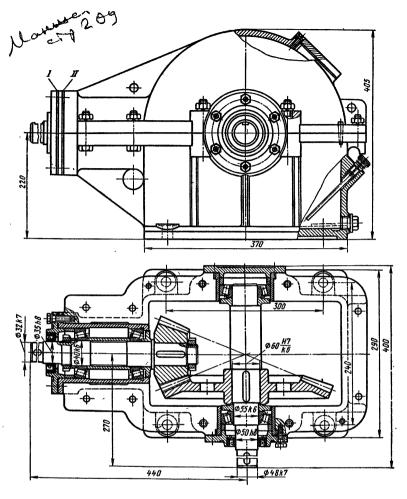


Рис. 12.19. Конический одноступенчатый зубчатый редуктор

Радиально-упорные подшипники регулируют набором металлических прокладок (см. рис. 12.19), устанавливаемых между подшипниковыми крышками и фланцами стаканов.

Зубчатое зацепление регулируют набором металлических прокладок, устанавливаемых между фланцем стакана ведущего вала и бобышкой корпуса редуктора, а также прокладками на ведомом валу, которые могут изменять расположение зубчатого колеса.

Для осмотра зацепления и заливки масла служит окно в верхней части корпуса редуктора. Окно закрыто крышкой; для уплотнения под крышку окна помещают прокладку из технического картона.

Маслоспускное отверстие закрывают пробкой и уплотняют прокладкой из маслостойкой резины.

Уровень масла проверяется жезловым маслоуказателем.

Относительное расположение корпуса и крышки редуктора фиксируется двумя коническими штифтами.

Редуктор крепят к фундаменту четырьмя болтами с резьбой М20.

XIII. Посадки основных деталей редуктора

Посадки назначают так же, как и в примере § 12.1.

XIV. Выбор сорта масла

Смазывание зубчатого зацепления производится окунанием зубчатого колеса в масло, заливаемое внутрь корпуса до погружения колеса на всю длину зуба.

По табл. 10.8 устанавливаем вязкость масла. При контактных напряжениях $\sigma_H = 470$ МПа и средней скорости v = 4,35 м/с вязкость масла должна быть приблизительно равна $28 \cdot 10^{-6}$ м²/с. По табл. 10.10 принимаем масло индустриальное И-30A (по ГОСТ 20799 – 75*).

Подшипники смазываем пластичным смазочным материалом, закладываемым в подшипниковые камеры при монтаже. Сорт мази выбираем по табл. 9.14 — солидол марки УС-2.

XV. Сборка редуктора

Сборка конического редуктора аналогична сборке цилиндрического редуктора (см. § 12.1).

Отличие состоит в необходимости регулировки роликовых конических подшипников и конического зубчатого зацепления.

Для нормальной работы подшипников следует следить за тем, чтобы, с одной стороны, вращение подвижных элементов подшипников проходило легко и свободно и, с другой стороны, чтобы в подшипниках не было излишне больших зазоров. Соблюдение этих требований, т. е. создание в подшипниках зазоров оптимальной величины, производится с помощью регулировки подшипников, для чего применяют наборы тонких металлических прокладок (см. поз. І на рис. 12.19), устанавливаемых под фланцы крышек подшипников. Необходимая толщина

набора прокладок может быть составлена из тонких металдических колец толщиной 0,1; 0,2; 0,4; 0,8 мм.

Для регулирования осевого положения конической шестерни обеспечивают возможность перемещения при сборке стакана, в котором обычно монтируют узел ведущего вала редуктора. Это перемещение также осуществляется с помощью набора металлических прокладок, которые устанавливают под фланцы стаканов (см. поз. II на рис. 12.19). Поэтому посадка таких стаканов в корпус должна обеспечивать зазор или в крайнем случае небольшой натяг $\frac{H7}{i_56}$.

В рассматриваемом редукторе подшипники ведущего вала установлены широкими торцами наружных колец наружу (см. рис. 12.19). Схему такой установки называют установкой

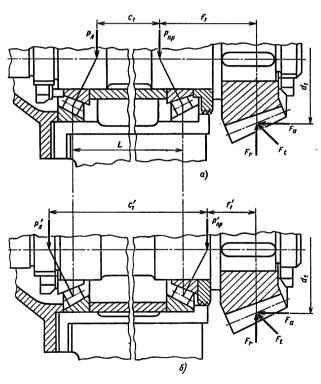


Рис. 12.20. Установка вала конической шестерни на радиально-упорных подшипниках: $a-\text{расстояние}\ c_1 < L;\ \delta-\text{расстояниe}\ c_1' > L$

«враспор»; она изображена на рис. 12.20, а. На этом рисунке показаны заштрихованными те детали, которые участвуют в передаче внешней осевой силы F_a . В радиально-упорных подшипниках возникают радиальные реакции, которые считаются приложенными к валу в точках пересечения оси вала с нормалями к контактным поверхностям подшипников.

Рациональна конструкция, в которой подшипники установлены широкими торцами наружных колец внутрь. Схема такой установки «врастяжку» изображена на рис. 12.20, 6.

При консольном расположении шестерни повышается неравномерность распределения нагрузки по длине зуба шестерни. Это можно уменьшить за счет повышения жесткости узла. Конструкция по схеме 6 является более жесткой, чем конструкция по схеме a, за счет того, что при одном и том же расстоянии L между подшипниками расстояние $c_1' > c_1$.

 \hat{K} недостаткам второй схемы (см. рис. 12.20, 6) относится то, что внешняя осевая сила F_a нагружает правый подшипник, на который действует большая радиальная сила $P'_{\rm np} > P'_{\rm n}$. В первой схеме (см. рис. 12.20, a) внешняя осевая сила F_a нагружает левый подшипник, на который действует меньшая радиальная сила $P_{\rm n} < P_{\rm np}$. Поэтому неоднородность нагрузки подшипников при установке по второй схеме возрастает.

§ 12.5. РАСЧЕТ КОНИЧЕСКОГО РЕДУКТОРА С КРУГОВЫМИ ЗУБЬЯМИ

Проведем этот расчет для того, чтобы показать, как замена прямых зубьев на круговые влияет на размеры конического редуктора. Все данные для расчета примем такими же, как и в предыдущем примере (см. § 12.4).

ЗАДАНИЕ НА РАСЧЕТ

Рассчитать одноступенчатый горизонтальный конический редуктор с круговыми зубьями (см. рис. 12.14 и 3.5) для привода к ленточному конвейеру. Исходные данные те же, что и в примере § 12.4: `полезное усилие на ленте конвейера $F_n = 8,55$ кH; скорость ленты $v_n = 1,3$ м/с; диаметр барабана $D_6 = 400$ мм. Редуктор нереверсивный, предназначен для длительной эксплуатации; работа односменная; валы установлены на полиципниках качения.

РАСЧЕТ РЕДУКТОРА

Принимаем те же материалы: для шестерни сталь 40X улучшенную с твердостью *НВ* 270 и для колеса сталь 40X улучшенную с твердостью *НВ* 245.

Допускаемые контактные напряжения

$$\left[\sigma_{H}\right] = \frac{\sigma_{H \lim b} K_{HL}}{\left[S_{H}\right]}.$$

При длительной эксплуатации коэффициент долговечности $K_{HI} = 1$. Коэффициент безопасности примем $[S_H] = 1.15$.

По табл. 3.2 предел контактной выносливости при базовом числе циклов $\sigma_{H \lim h} = 2HB + 70$.

Тогда допускаемые контактные напряжения:

для шестерни
$$[\sigma_{H1}] = \frac{(2 \cdot 270 + 70) \, 1}{1,15} = 530 \, \text{М}\Pi a;$$
 для колеса $[\sigma_{H2}] = \frac{(2 \cdot 245 + 70) \, 1}{1,15} = 485 \, \text{М}\Pi a.$

Для криволинейных колес (так же, как для косозубых) принимаем расчетное допускаемое контактное напряжение [см. формулу (3.10) 7

$$[\sigma_H] = 0.45 ([\sigma_{H1}] + [\sigma_{H2}]) = 0.45 (530 + 485) = 460 \text{ M}\Pi a.$$

Передаточное число редуктора u = 3.15.

Вращающие моменты:

на валу шестерни $T_1 = 126 \cdot 10^3 \text{ H·мм};$ на валу колеса $T_2 = 400 \cdot 10^3 \text{ H·мм}.$

Коэффициент, учитывающий неравномерность распределения нагрузки по ширине венца, при консольном расположении одного из колес принимаем по табл. 3.1 $K_{HB} = 1,35$.

Коэффициент ширины венца по отношению к внешнему конусному расстоянию (принимаем рекомендуемое значение)

$$\psi_{bR_e} = \frac{b}{R_e} = 0.285.$$

Тогда внешний делительный диаметр колеса при проектиро вочном расчете по формуле (3.29)

$$d_{e2} = K_d \sqrt[3]{\frac{T_2 K_{\dot{H}\dot{\beta}} u}{[\sigma_H]^2 (1 - 0.5 \psi_{bR})^2 \psi_{bR_a}}},$$

где для колес с круговыми зубьями $K_d = 86$;

$$d_{e2} = 86 \sqrt[3]{\frac{400 \cdot 10^3 \cdot 1,35 \cdot 3,15}{460^2 (1 - 0.5 \cdot 0.285)^2 \cdot 0.285}} = 281 \text{ MM}.$$

Принимаем по ГОСТ 12289 – 76 (см. с. 49) ближайшее значение $d_{e2} = 280$ мм. Напомним, что в предыдущем примере для колес с прямыми зубьями внешний делительный диаметр колеса был $d_{e2} = 315$ мм.

Примем число зубьев шестерни $z_1 = 25$. Число зубьев колеса $z_2 = z_1 u = 25 \cdot 3,15 = 78,75$.

Примем $z_2 = 79$.

Тогда
$$u = \frac{z_2}{z_1} = \frac{79}{25} = 3,16.$$

Отклонение от заданного $\frac{3,16-3,15}{3,15} \cdot 100\% = 0,32\%$, что до-

пускается ГОСТ 12289-76 (по стандарту отклюнение не должно превышать 3%).

Внешний окружной модуль

$$m_{te} = \frac{d_{e2}}{z_2} = \frac{280}{79} = 3,55$$
 MM.

В конических колесах не обязательно иметь стандартное значение m_{te} . Это связано с технологией нарезания зубьев конических колес. Оставим значение $m_{te} = 3,55$ мм.

Углы делительных конусов

ctg
$$\delta_1 = u = 3.16$$
; $\delta_1 = 17^{\circ}34'$;
 $\delta_2 = 90^{\circ} - \delta_1 = 90^{\circ} - 17^{\circ}34' = 72^{\circ}26'$.

Внешнее конусное расстояние R_e и ширина венца b

$$R_e = 0.5 m_{te} \sqrt{z_1^2 + z_2^2} = 0.5 \cdot 3.55 \sqrt{25^2 + 79^2} = 147 \text{ mm};$$

 $b = \psi_{bR}, R_e = 0.285 \cdot 147 = 42 \text{ mm}.$

Внешний делительный диаметр шестерни

$$d_{e1} = m_{te}z_1 = 3,55 \cdot 25 = 89$$
 MM.

Средний делительный диаметр шестерни

$$d_1 = 2 (R_e - 0.5b) \sin \delta_1 =$$

= 2 (147 - 0.5 · 42) sin 17°34′ = 75.8 mm.

Средний окружной и средний нормальный модули зубьев

$$m = \frac{d_1}{z_1} = \frac{75.8}{25} = 3.03 \text{ MM};$$

 $m_n = m\cos \beta_n = 3{,}03\cos 35^\circ = 2{,}48 \text{ MM}.$

Здесь принят средний угол наклона зуба $\beta_n = 35^\circ$. Коэффициент ширины шестерни по среднему диаметру

$$\psi_{bd} = \frac{b}{d_1} = \frac{42}{75.8} = 0,555.$$

Средняя окружная скорость и степень точности передачи

$$v = \frac{\omega_1 d_1}{2} = \frac{101, 5 \cdot 75, 8}{2} = 3,84 \text{ m/c}.$$

Принимаем 7-ю степень точности, назначаемую обычно для конических передач.

Коэффициент нагрузки для проверки контактных напряжений

$$K_H = K_{H\beta} K_{H\alpha} K_{H\nu};$$

по табл. 3.5 $K_{HB} = 1,23$;

по табл. 3.4 $K_{H\alpha} = 1,04$;

по табл. 36 $K_{H_0} = 1,00$.

Таким образом, $K_H = 1,23 \cdot 1,04 \cdot 1,00 = 1,28$.

Проверка контактных напряжений [см. формулу (327)]

$$\sigma_{H} = \frac{270}{R_{e} - 0.5b} \sqrt{\frac{T_{2}K_{H}\sqrt{(u^{2} + 1)^{3}}}{bu^{2}}} =$$

$$= \frac{270}{147 - 0.5 42} \sqrt{\frac{400 \cdot 10^{3} \cdot 1.28\sqrt{(3.16^{2} + 1)^{3}}}{42 \cdot 3.16^{2}}} = 451 \text{ M}\Pi\text{a} < [\sigma_{H}].$$

Окружная сила

$$F_t = \frac{2T_1}{d_1} = \frac{2T_1 \cos \beta_n}{m_n z_1} = \frac{2 \cdot 126 \cdot 10^3 \cdot \cos 35^\circ}{2.48 \cdot 25} \approx 3320 \text{ H}.$$

Проверка зубьев на выносливость по напряжениям изгиба

$$\sigma_F = \frac{F_t K_F Y_F Y_\beta K_{F\alpha}}{bm_{-}}.$$

Коэффициент нагрузки $K_F = K_{FB}K_{Fv} = 1,375$. Здесь по табл. 3.7 $K_{F\beta}=1,375;$ по табл. 3.8 $K_{F\upsilon}=1,0.$ Коэффициент У формы зуба выбирают так:

$$z_v = \frac{z}{\cos \delta \cos^3 \beta_n}.$$

Для шестерни
$$z_{v1} = \frac{z_1}{\cos \delta_1 \cos^3 \beta_n} = \frac{25}{\cos 17^\circ 34' (\cos 35^\circ)^3} \approx 48.$$

Для колеса $z_{v2} = \frac{z_2}{\cos \delta_2 \cos^3 \beta_n} = \frac{79}{\cos 72^\circ 26' (\cos 35^\circ)^3} \approx 476.$

При этом $Y_{F1} = 3,665$ и $Y_{F2} = 3,60$ (см. с. 42).

Коэффициент Ув учитывает повышение прочности криволинейных зубьев по сравнению с прямолинейными:

$$Y_{\beta} = 1 - \frac{\beta^{\circ}}{140} = 1 - \frac{35}{140} = 1 - 0.25 = 0.75.$$

Коэффициент $K_{F\alpha}$ учитывает распределение нагрузки между зубьями. По аналогии с косозубыми колесами принимаем

$$K_{F\alpha} = \frac{4 + (\varepsilon_{\alpha} - 1)(n - 5)}{4\varepsilon_{\alpha}} = \frac{4 + (1,3 - 1)(7 - 5)}{4\cdot 1,3} = 0,884,$$

где n=7 — степень точности передачи; $\epsilon_{\alpha}=1,3$ (см. с. 53). Допускаемое напряжение

$$[\sigma_F] = \frac{\sigma_{F \text{lim}b}^{0, \bullet}}{[S_F]}.$$

По табл. 3.9 для стали 40X улучшенной при твердости HB < 350 предел выносливости при отнулевом цикле изгиба $\sigma^0_{Flim\,b} = 1,8$ HB; для шестерни $\sigma^0_{Flim\,b1} = 1,8 \cdot 270 = 490$ МПа; для колеса $\sigma^0_{Flim\,b2} = 1,8 \cdot 245 = 440$ МПа.

Коэффициент безопасности $[S_F] = [S_F]' [S_F]'' = 1,75$ (как и в основном расчете, см. с. 344).

Допускаемые напряжения и отношения $\frac{[\sigma_F]}{Y_F}$:

для шестерни
$$[\sigma_{F1}] = \frac{490}{1,75} = 280 \text{ M}\Pi \text{a}; \ \frac{[\sigma_{F1}]}{Y_{F1}} = \frac{280}{3,665} = 76,5 \text{ M}\Pi \text{a};$$

для колеса
$$[\sigma_{F2}] = \frac{440}{1,75} = 250 \text{ МПа}; \frac{[\sigma_{F2}]}{Y_{F2}} = \frac{250}{3,60} = 69,9 \text{ МПа}.$$

Дальнейший расчет ведем для зубьев колеса, так как

$$\frac{\left[\sigma_{F2}\right]}{Y_{F2}} < \frac{\left[\sigma_{F1}\right]}{Y_{F1}}.$$

Проверяем зуб колеса:

$$\sigma_{F2} = \frac{3320 \cdot 1,375 \cdot 3,60 \cdot 0,75 \cdot 0,884}{42 \cdot 2,48} = 104 \text{ M}\Pi a < [\sigma_{F2}].$$

Расчет валов и подшипников и эскизные компоновки выполняем так же, как и в предыдущем примере.

§ 12.6. ПРОЕКТИРОВАНИЕ ОДНОСТУПЕНЧАТОГО ЧЕРВЯЧНОГО РЕЛУКТОРА

ЗАДАНИЕ НА ПРОЕКТИРОВАНИЕ

Спроектировать одноступенчатый червячный редуктор с нижним расположением червяка для привода к винтовому конвейеру (рис. 12.21).

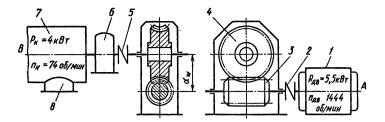


Рис. 12.21. Привод винтового конвейера с червячным редуктором: $I \rightarrow$ электродвигатель; $2 \rightarrow$ муфта; $3 \rightarrow$ червяк; $4 \rightarrow$ червячное колесо; $5 \rightarrow$ муфта;

7 – электродвигатель; 2 – муфта; 3 – червяк; 4 – червячное колесо; 5 – муфта; 6 – головная стойка конвейера; 7 – желоб конвейера; 8 – разгрузочный патрубок; А – вал электродвигателя и 1-й вал редуктора; В – вал конвейера и 2-й вал редуктора

Мощность, необходимая для работы конвейера, $P_{\rm k}=4$ кВт; частота вращения вала конвейера $n_{\rm k}=74$ об/мин (угловая скорость $\omega_{\rm k}=\frac{\pi n_{\rm k}}{30}=\frac{3,14\cdot74}{30}=7,75\,$ рад/с). Редуктор нереверсивный, предназначен для длительной эксплуатации; работа в две смены: валы установлены на подшипниках качения.

РАСЧЕТ И КОНСТРУИРОВАНИЕ

Выбор электродвигателя и кинематический расчет

Примем предварительно КПД червячного редуктора с учетом пояснений к формуле (4.14) $\eta \approx 0.8$.

Требуемая мощность электродвигателя

$$P_{\rm TP} = \frac{P_{\rm K}}{\eta} = \frac{4}{0.8} = 5 \text{ kBT}.$$

По табл. П1 приложения по требуемой мощности $P_{\rm тp}=5~{\rm кBr}$ выбираем электродвигатель трехфазный короткозамкнутый серии 4A закрытый обдуваемый с синхронной частотой вращения 1500 об/мин 4A112M4У3, с параметрами $P_{\rm nb}=5.5~{\rm kBr}$ и скольжением 3,7%. Номинальная частота вращения $n_{\rm nb}=1500-0.037\cdot1500=1444$ об/мин, угловая скорость

$$\omega_{\text{AB}} = \frac{\pi n_{\text{AB}}}{30} = \frac{3,14 \cdot 1444}{30} = 151,5 \text{ pag/c.}$$

По табл. П2 диаметр выходного конца вала ротора $d_{\rm дB} =$ = 32 мм.

Передаточное число (равное передаточному отношению)

$$u = \frac{n_{\text{AB}}}{n_{\text{x}}} = \frac{\omega_{\text{AB}}}{\omega_{\text{x}}} = \frac{1444}{74} = 19,6.$$

II. Расчет редуктора

Число витков червяка z_1 принимаем в зависимости от передаточного числа: при u=19,6 принимаем $z_1=2$ (см. с. 55).

Число зубьев червячного колеса

$$z_2 = z_1 u = 2 \cdot 19,6 = 39,2.$$

Принимаем стандартное значение $z_2 = 40$ (см. табл. 4.1).

При этом
$$u = \frac{z_2}{z_1} = \frac{40}{2} = 20.$$

Отличие от заданного

$$\frac{20-19.6}{19.6} \cdot 100\% = 2.04\%.$$

По ГОСТ 2144-76 допустимо отклонение ≤ 4%.

Выбираем материал червяка и венца червячного колеса. Принимаем для червяка сталь 45 с закалкой до твердости не менее *HRC* 45 и последующим шлифованием.

Так как к редуктору не предъявляются специальные требования, то в целях экономии принимаем для венца червячного колеса бронзу БрА9Ж3Л (отливка в песчаную форму).

Предварительно примем скорость скольжения в зацеплении $v_s \approx 5$ м/с. Тогда при длительной работе допускаемое контактное напряжение $[\sigma_H] = 155$ МПа (табл. 4.9). Допускаемое напряжение изгиба для нереверсивной работы $[\sigma_{0F}] = K_{FL} [\sigma_{0F}]'$. В этой формуле $K_{FL} = 0,543$ при длительной работе, когда число циклов нагружения зуба $N_{\Sigma} > 25 \cdot 10^7$; $[\sigma_{0F}]' = 98$ МПа — по табл. 4.8;

$$[\sigma_{0F}] = 0.543 \cdot 98 = 53.3 \text{ M}\Pi a.$$

Принимаем предварительно коэффициент диаметра червяка q=10.

Вращающий момент на валу червячного колеса

$$T_2 = \frac{P_2}{\omega_2} = \frac{P_{\kappa}}{\omega_{\kappa}} = \frac{4 \cdot 10^3}{7,75} = 517 \text{ H} \cdot \text{M} = 517 \cdot 10^3 \text{ H} \cdot \text{MM}.$$

Принимаем предварительно коэффициент нагрузки K = 1,2. Определяем межосевое расстояние из условия контактной выносливости [формула (4.19)]:

$$a_{w} = \left(\frac{z_{2}}{q} + 1\right)^{3} \sqrt{\left(\frac{170}{z_{2}} \left[\sigma_{H}\right]\right)^{2} T_{2}K} =$$

$$= \left(\frac{40}{10} + 1\right)^{3} \sqrt{\left(\frac{170}{40} \cdot 155\right)^{2} 517 \cdot 10^{3} \cdot 1, 2} = 5,0\sqrt[3]{46,5 \cdot 10^{3}} =$$

$$= 180 \text{ MM}.$$

Модуль

$$m = \frac{2a_w}{z_2 + a} = \frac{2 \cdot 180}{40 + 10} = 7,20$$
 MM.

Принимаем по ГОСТ 2144 – 76 (табл. 4.2) стандартные значения m=8 мм и q=10.

Межосевое расстояние при стандартных значениях т и q

$$a_w = \frac{m(q+z_2)}{2} = \frac{8(10+40)}{2} = 200$$
 mm.

Основные размеры червяка: делительный диаметр червяка

$$d_1 = qm = 10 \cdot 8 = 80$$
 MM;

диаметр вершин витков червяка

$$d_{a1} = d_1 + 2m = 80 + 2 \cdot 8 = 96$$
 MM;

диаметр впадин витков червяка

$$d_{f1} = d_1 - 2.4m = 80 - 2.4 \cdot 8 = 60.8 \text{ mm};$$

длина нарезанной части шлифованного червяка [см. формулу (4.7)] с 57

$$b_1 \ge (11 + 0.06z_2) m + 25 = (11 + 0.06 \cdot 40) 8 + 25 = 132.2 \text{ MM};$$

принимаем $b_1=132$ мм; 57 делительный угол подъема витка γ (по табл. 4.3): при $z_1=2$

и q = 10 $\gamma = 11^{\circ}19'$. Основные размеры венца червячного колеса:

$$d_2 = z_2 m = 40 \cdot 8 = 320 \text{ MM};$$

диаметр вершин зубьев червячного колеса

делительный диаметр червячного колеса

$$d_{a2} = d_2 + 2m = 320 + 2 \cdot 8 = 336$$
 MM;

диаметр впадин зубьев червячного колеса

$$d_{f2} = d_2 - 2.4m = 320 - 2.4 \cdot 8 = 300.8$$
 mm;

наибольший диаметр червячного колеса

$$d_{aM2} \le d_{a2} + \frac{6m}{z_1 + 2} = 336 + \frac{6 \cdot 8}{2 + 2} = 348 \text{ MM};$$

ширина венца червячного колеса [см. формулу (4.12)]

$$b_2 \le 0.75d_{a1} = 0.75 \cdot 96 = 72$$
 MM.

Окружная скорость червяка

$$v_1 = \frac{\pi d_1 n_1}{60} = \frac{3,14 \cdot 80 \cdot 10^{-3} \cdot 1444}{60} = 6,06 \text{ M/c}.$$

Скорость скольжения

$$v_s = \frac{v_1}{\cos \gamma} = \frac{6,06}{\cos 11^{\circ}19'} = 6,15 \text{ M/c};$$

при этой скорости $[\sigma_H] \approx 149$ МПа (см. табл. 4.9). е. 68

Отклонение
$$\frac{155-149}{149} \cdot 100 \% = 4 \%$$
; к тому же межосевое

расстояние по расчету было получено $a_w = 180$ мм, а после выравнивания m и q по стандарту было увеличено до $a_w = 200$ мм, т. е. на 10%, и пересчет a_w по формуле (4.19) делать не надо, необходимо лишь проверить σ_H . Для этого уточняем КПД редуктора [см. формулу (4.14)]:

при скорости $v_s = 6,15$ м/с приведенный коэффициент трения для безоловянной бронзы и шлифованного червяка (см. табл. 4.4) $f' = 0,020 \cdot 1,5 = 0,03$ и приведенный угол трения $\rho' = 1^{\circ}43'$.

КПД редуктора с учетом потерь в опорах, потерь на разбрызгивание и перемешивание масла

$$\eta = (0.95 \div 0.96) \frac{\text{tg } \gamma}{\text{tg } (\gamma + \rho')} = (0.95 \div 0.96) \frac{\text{tg } 11^{\circ}19'}{\text{tg } (11^{\circ}19' + 1^{\circ}43')} \approx 0.82.$$

По табл. 4.7 выбираем 7-ю степень точности передачи. В этом случае коэффициент динамичности $K_v = 1,1$.

Коэффициент неравномерности распределения нагрузки [формула (4.26)]

$$K_{\beta}=1+\left(\frac{z_2}{\theta}\right)^3(1-x),$$

где коэффициент деформации червяка при q=10 и $z_1=2$ по

табл. 4.6 $\theta = 86$. Примем вспомогательный коэффициент x = 0.6 (незначительные колебания нагрузки, с. 65):

$$K_{\beta} = 1 + \left(\frac{40}{86}\right)^3 (1 - 0.6) \approx 1.04.$$

Коэффициент нагрузки

$$K = K_0 K_v = 1,04 \cdot 1,1 \approx 1,14.$$

Проверяем контактное напряжение [формула (4.23)]:

$$\sigma_H = \frac{170}{\frac{z_2}{q}} \sqrt{\frac{T_2 K \left(\frac{z_2}{q} + 1\right)^3}{a_w^3}} =$$

$$= \frac{170}{4,0} \sqrt{\frac{517 \cdot 10^3 \cdot 1,14 \cdot 5^3}{200^3}} = 129 \text{ M}\Pi \text{a} < [\sigma_H] = 149 \text{ M}\Pi \text{a}.$$

Результат расчета следует признать удовлетворительным, так как расчетное напряжение ниже допускаемого на 13,4% (разрешается до 15%).

Проверка прочности зубьев червячного колеса на нзгиб. Эквивалентное число зубьев

$$z_v = \frac{z_2}{\cos^3 \gamma} = \frac{40}{(\cos 11^\circ 19')^3} = 42.4.$$

Коэффициент формы зуба по табл. 4.5 $Y_F = 2,24$. Напряжение изгиба [см. формулу (4.24)]

$$\sigma_F = \frac{1,2T_2KY_F}{z_2b_2m^2} = \frac{1,2 \cdot 517 \cdot 10^3 \cdot 1,14 \cdot 2,24}{40 \cdot 72 \cdot 8^2} = 8,8 \text{ M}\Pi a,$$

что значительно меньше вычисленного выше $[\sigma_{0F}]=53,3\,$ МПа.

III. Предварительный расчет валов редуктора и конструирование червяка и червячного колеса

Крутящие моменты в поперечных сечениях валов: ведомого (вал червячного колеса)

$$T_{\rm k2} = T_2 = 517 \cdot 10^3 \, \text{H} \cdot \text{MM};$$

ведущего (червяк)

$$T_{\text{K1}} = T_1 = \frac{T_2}{u\eta} = \frac{517 \cdot 10^3}{20 \cdot 0.82} = 32.4 \cdot 10^3 \text{ H} \cdot \text{MM}.$$

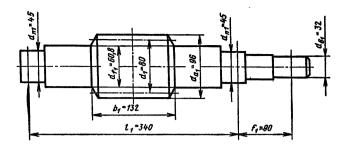


Рис. 12.22. Червяк

Витки червяка выполнены за одно целое с валом (рис. 12.22 и 4.1).

Диаметр выходного конца ведущего вала по расчету на кручение при $\left[\tau_{\kappa}\right]=25\,$ МПа

$$d_{\rm B1}\geqslant\sqrt[3]{rac{T_{
m K1}}{0.2\,[au_{
m K}]}}=\sqrt[3]{rac{32,4\cdot 10^3}{0,2\cdot 25}}=18,7\,$$
 mm.

Но для соединения его с валом электродвигателя примем $d_{\rm B1}=d_{\rm дB}=32$ мм; диаметры подшипниковых шеек $d_{\rm n1}=45$ мм. Параметры нарезанной части: $d_{\rm f1}=60.8$ мм; $d_{\rm 1}=80$ мм и $d_{\rm a1}=96$ мм. Для выхода режущего инструмента при нарезании витков рекомендуется участки вала, прилегающие к нарезке, протачивать до диаметра меньше $d_{\rm f1}$.

Длина нарезанной части $b_1 = 132$ мм.

Расстояние между опорами червяка примем $l_1 \approx d_{aM2} = 340$ мм;

расстояние от середины выходного конца до ближайшей опоры $f_1 = 90\,$ мм.

Ведомый вал (см. рис. 12.26).

Диаметр выходного конца

$$d_{B2} = \sqrt[3]{\frac{T_{K2}}{0.2 \left[\tau_{K}\right]}} = \sqrt[3]{\frac{517 \cdot 10^{3}}{0.2 \cdot 25}} = 46.7 \text{ mm.}$$

Принимаем $d_{\rm B2} = 48$ мм.

Диаметры подшипниковых шеек $d_{n2} = 55$ мм, диаметр вала в месте посадки червячного колеса $d_{k2} = 60$ мм.

Диаметр ступицы червячного колеса

$$d_{cr2} = (1.6 \div 1.8) d_{k2} = (1.6 \div 1.8) 60 = 96 \div 108$$
 MM.

Принимаем $d_{cr2} = 100$ мм.

Длина ступицы червячного колеса

$$l_{cr2} = (1.2 \div 1.8) d_{r2} = (1.2 \div 1.8) 60 = 72 \div 108 \text{ MM}.$$

Принимаем $l_{cr2} = 90$ мм.

IV. Конструктивные размеры корпуса редуктора (см. рис. 10.17, 10.18 и табл. 10.2 и 10.3)

Толщина стенок корпуса и крышки:

$$\delta = 0.04a + 2 = 0.04 \cdot 200 + 2 = 8.00 + 2 = 10.00$$
 mm,

принимаем $\delta = 10$ мм;

$$\delta_1 = 0.032a + 2 = 0.032 \cdot 200 + 2 = 6.64 + 2 = 8.64$$
 MM.

принимаем $\delta_1 = 10$ мм.

Толщина фланцев (поясов) корпуса и крышки

$$b = b_1 = 1.5\delta = 1.5 \cdot 10 = 15$$
 MM.

Толщина нижнего пояса корпуса при наличии бобышек

$$p_1 = 1.5\delta = 1.5 \cdot 10 = 15$$
 mm;

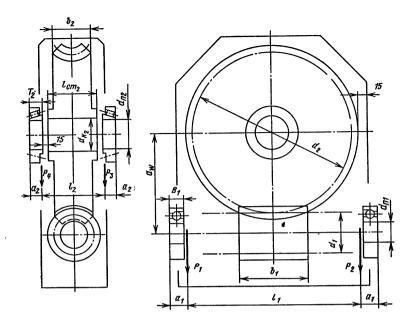
$$p_2 = (2,25 \div 2,75) \delta = (2,25 \div 2,75) 10 = 22,5 \div 27,5$$
 mm,

принимаем $p_2 = 25$ мм.

Диаметры болтов:

фундаментных $d_1 = (0.03 \div 0.036) a + 12 = (0.03 \div 0.036) 200 + 12 = 18 \div 19.2 \,$ мм.

принимаем болты с резьбой М20: диаметры болтов $d_2 = 16$ мм и $d_3 = 12$ мм.


V. Первый этап компоновки редуктора (рис. 12.23)

Компоновочный чертеж выполняем в двух проекциях — разрез по оси колеса и разрез по оси чертежа; желательный масштаб 1:1, чертить тонкими линиями!

Примерно посередине листа параллельно его длинной стороне проводим осевую линию; вторую осевую, параллельную первой, проводим на расстоянии $a_w = 200$ мм. Затем проводим две вертикальные осевые линии, одну для главного вида, вторую для вида сбоку.

Вычерчиваем на двух проекциях червяк и червячное колесо.

Очерчиваем внутреннюю стенку корпуса, принимая зазор между стенкой и червячным колесом и между стенкой и ступицей червячного колеса ~ 15 мм.

Рнс. 12.23. Компоновка червячного редуктора: $l_1=340\,$ мм; $l_2=125\,$ мм; $a_1=30\,$ мм; $a_2=22\,$ мм; $l_{\rm CT}{}_2=90\,$ мм; $a_{\rm w}=200\,$ мм; $d_1=80\,$ мм; $d_2=320\,$ мм; $b_1=132\,$ мм; $b_2=72\,$ мм

Вычерчиваем подшипники червяка на расстоянии $l_1 = d_{aM2} = 340$ мм один от другого, располагая их симметрично относительно среднего сечения червяка.

Так же симметрично располагаем подшипники вала червячного колеса. Расстояние между ними замеряем по чертежу $l_2 = 125$ мм.

В связи с тем, что в червячном зацеплении возникают значительные осевые усилия, примем радиально-упорные подшипники: шариковые средней серии для червяка и роликовые конические легкой серии для вала червячного колеса (см. табл. Пб и П7):

Условное	d	D	В	T	С	
обозначение подшипника		м	кН	e		
46309 7211	45 55	100 100	25 21	25 23	61,4 65	0,68 0,41

VI. Проверка долговечности подшинников

Силы в зацеплении (рис. 12.24):

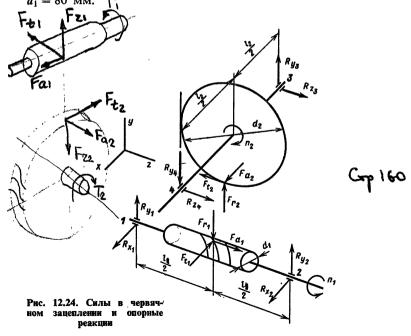
окружная сила на червячном колесе, равная осевой силе на червяке,

$$F_{t2} = F_{a1} = \frac{2T_2}{d_2} = \frac{2 \cdot 517 \cdot 10^3}{320} = 3220 \text{ H};$$

окружная сила на червяке, равная осевой силе на колесе,

$$F_{t1} = F_{a2} = \frac{2T_1}{d_1} = \frac{2 \cdot 32,40 \cdot 10^3}{80} = 810 \text{ H};$$

радиальные силы на колесе и червяке


$$F_{r2} = F_{r1} = F_{t2} \operatorname{tg} \alpha = 3220 \cdot \operatorname{tg} 20^{\circ} = 1160 \text{ H}.$$

При отсутствии специальных требований червяк должен иметь правое направление витков.

Направления сил представлены на рис. 12.24; опоры, воспринимающие внешние осевые силы, обозначим цифрами «2» и «4».

Вал червяка

Расстояние между опорами $l_1 \approx d_{aM_2} = 340$ мм. Диаметр $d_1 = 80$ мм. Т

Реакции опор (правую опору, воспринимающую внешнюю осевую силу F_{a1} , обозначим цифрой «2»):

в плоскости хг

$$R_{x1} = R_{x2} = \frac{F_{t1}}{2} = \frac{810}{2} = 405 \text{ H};$$

в плоскости уг

$$-R_{y1}l_1 + F_{r1}\frac{l_1}{2} - \dot{F}_{a1}\frac{d_1}{2} = 0;$$

$$R_{y1} = \frac{1160 \cdot 170 - 3220 \cdot 40}{340} = 205 \text{ H};$$

$$R_{y2}l_1 - F_{r1}\frac{l_1}{2} - F_{a1}\frac{d_1}{2} = 0;$$

$$R_{y2} = \frac{1160 \cdot 170 + 3220 \cdot 40}{340^4} = 955 \text{ H}.$$

Проверка: $R_{y1} + R_{y2} - F_{r1} = 205 + 955 - 1160 = 0$. Суммарные реакции

$$P_1 = P_{r1} = \sqrt{R_{x1}^2 + R_{y1}^2} = \sqrt{405^2 + 205^2} = 454 \text{ H};$$

 $P_2 = P_{r2} = \sqrt{R_{x2}^2 + R_{y2}^2} = \sqrt{405^2 + 955^2} = 1040 \text{ H}.$

Осевые составляющие радиальных реакций шариковых радиально-упорных подшипников по формуле (9.9)

$$S_1 = eP_{r1} = 0.68 \cdot 454 = 309 \text{ H};$$

 $S_2 = eP_{r2} = 0.68 \cdot 1040 = 710 \text{ H},$

где для подшипников шариковых радиально-упорных с углом $\alpha = 26^{\circ}$ коэффициент осевого нагружения e = 0,68 (см. табл. 9.18).

Осевые нагрузки подшипников (см. табл. 9.21). В нашем случае $S_1 < S_2$; $P_{a1} = F_a \geqslant S_2 - S_1$; тогда $P_{a1} = S_1 = 309\,$ H; $P_{a2} = S_1 + F_{a1} = 309 + 3220 = 3529\,$ H.

Рассмотрим левый («первый») подшипник.

Отношение $\frac{P_{a1}}{P_{r1}} = \frac{309}{454} = 0,68 = e$; осевую нагрузку не учи-

тываем.

Эквивалентная нагрузка

$$P_{31} = P_{r1}VK_6K_T = 454 \cdot 1,3 = 590 \text{ H},$$

где по табл. 9.19 для приводов винтовых конвейеров $K_6=1,3$. Коэффициенты V=1 и $K_T=1$.

Долговечность определяем по более нагруженному под-

Рассмотрим правый («второй») подшипник.

Отношение
$$\frac{P_{a2}}{P_{r2}} = \frac{3529}{1040} = 3,40 > e$$
,

поэтому эквивалентную нагрузку определяем с учетом осевой;

$$P_{32} = (XP_{r2}V + YP_{a2}) K_6K_T =$$

= (0,41 · 1040 · 1 + 0,87 · 3529) 1,3 = 4520 H = 4,52 kH,

где $\bar{X} = 0.41$ и Y = 0.87 по табл. 9.18.

Расчетная долговечность, млн. об., по формуле (9.1)

$$L = \left(\frac{C}{P_{32}}\right)^3 = \left(\frac{61,4}{4,52}\right)^3 \approx 2480$$
 млн. об.

Расчетная долговечность, ч

$$L_n = \frac{L \cdot 10^6}{60n} = \frac{2480 \cdot 10^6}{60 \cdot 1444} \approx 28\,800 \text{ ч,}$$

где n = 1444 об/мин — частота вращения червяка.

Ведомый вал (см. рис. 12.24).

Расстояние между опорами (точнее, между точками приложения радиальных реакций P_3 и P_4 — см. рис. 12.23) l_2 = 125 мм; диаметр d_2 = 320 мм.

Реакции опор (левую опору, воспринимающую внешнюю осевую силу F_{a2} , обозначим цифрой «4» и при определении осевого нагружения будем считать ее «второй»; см. табл. 9.21).

В плоскости хг

$$R_{z3} = R_{z4} = \frac{F_{t2}}{2} = \frac{3220}{2} = 1610 \text{ H}.$$

В плоскости уг

$$R_{y3}l_2 + F_{r2}\frac{l_2}{2} - F_{a2}\frac{d_2}{2} = 0;$$

$$R_{y3} = \frac{-1160 \cdot 62,5 + 810 \cdot 160}{125} = 451 \text{ H};$$

$$R_{y4}l_2 - F_{r2}\frac{l_2}{2} - F_{a2}\frac{d_2}{2} = 0;$$

$$R_{y4} = \frac{1160 \cdot 62,5 + 810 \cdot 160}{125} = \frac{201500}{125} = 1611 \text{ H}.$$

Проверка: $R_{y3} - R_{y4} + F_{r2} = 451 - 1611 + 1160 = 0$.

Суммарные реакции

$$P_3 = P_{r3} = \sqrt{R_{z3}^2 + R_{y3}^2} = \sqrt{1610^2 + 451^2} = 1660 \text{ H};$$

 $P_4 = P_{r4} = \sqrt{R_{z4}^2 + R_{y4}^2} = \sqrt{1610^2 + 1611^2} = 2260 \text{ H}.$

Осевые составляющие радиальных реакций конических подшипников — по формуле (9.9):

$$S_3 = 0.83eP_{r3} = 0.83 \cdot 0.41 \cdot 1660 = 565 \text{ H};$$

 $S_4 = 0.83eP_{r4} = 0.83 \cdot 0.41 \cdot 2260 = 770 \text{ H},$

где для подшипников 7211 коэффициент влияния осевого нагружения e = 0.41.

Осевые нагрузки подшипников (см. табл. 9.21) в нашем случае $S_3 < S_4$; $P_{a3} = F_a > S_4 - S_3$; тогда $P_{a3} = S_3 = 565$ H; $P_{a4} = S_3 + F_a = 565 + 810 = 1375$ H.

Для правого (с индексом «З») подшипника отношение $\frac{P_{a3}}{P_{r3}} = \frac{565}{1660} = 0,34 < e$, поэтому при подсчете эквивалентной

нагрузки осевые силы не учитываем.

Эквивалентная нагрузка

$$P_{33} = P_{r3}VK_6K_T = 1660 \cdot 1,3 = 2160 \text{ H}.$$

В качестве опор ведомого вала применены одинаковые подшипники 7211. Долговечность определим для левого подшипника («четвертого»), для которого эквивалентная нагрузка значительно больше.

Для левого (индекс «4») подшипника $\frac{P_{a4}}{\dot{P}_{r4}} = \frac{1375}{2260} = 0,610 > e$; мы должны учитывать осевые силы и определять эквивалентную нагрузку по формуле (9.5); примем V=1; $K_6=1,3$ и $K_T=1$; для конических подшипников 7211 при $\frac{P_{a4}}{P_{r4}} > e$ коэффициенты X=0,4 и Y=1,459 (см. табл. 9.18 и П7);

$$P_{34} = (0.4 \cdot 2260 \cdot 1 + 1.459 \cdot 1375) \cdot 1.3 \cdot 1 \approx 3780 \text{ H} = 3.78 \text{ kH}.$$

Расчетная долговечность по формуле (9.1), млн. об.

$$L = \left(\frac{C}{P_{\text{94}}}\right)^{\frac{10}{3}} = \left(\frac{65}{3,78}\right)^{\frac{10}{3}} = \left(\frac{65}{3,78}\right)^{3} \sqrt[3]{\frac{65}{3,78}} \approx 13\,000 \, \text{ млн. об.,}$$

где C = 65 (см. с. 375).

Расчетная долговечность, ч

$$L_h = \frac{L \cdot 10^6}{60n} = \frac{13\,000 \cdot 10^6}{60 \cdot 74} = 3 \cdot 10^6 \text{ y},$$

где n = 74 об/мин — частота вращения вала червячного колеса.

Столь большая расчетная долговечность объясняется тем, что по условию монтажа диаметр шейки должен быть больше диаметра $d_{\rm B2}=48$ мм. Поэтому был выбран подшипник 7211. Возможен вариант с подшипником 7210, но и для него долговечность будет порядка 1 млн. ч. Кроме того, следует учесть, что ведомый вал имеет малую частоту вращения n=74 об/мин.

VII. Второй этап компоновки редуктора

Используем чертежи первого этапа компоновки (см. рис. 12.23). Второй этап (рис. 12.25) имеет целью конструктивно оформить основные детали — червячный вал, вал червячного колеса, червячное колесо, корпус, подшипниковые узлы и др.

Смазывание зацепления и подшипников — разбрызгиванием жидкого масла, залитого в корпус ниже уровня витков так, чтобы избежать чрезмерного заполнения подшипников маслом, нагнетаемым червяком. На валу червяка устанавливаем крыльчатки; при работе редуктора они будут разбрызгивать масло и забрасывать его на колесо и в подшипники.

Уплотнение валов обеспечивается резиновыми манжетами. В крышке люка размещаем отдушину. В нижней части корпуса вычерчиваем пробку для спуска масла и устанавливаем маслоуказатель с трубкой из оргстекла.

Конструируем стенку корпуса и крышки. Их размеры были определены в п. IV данного примера. Вычерчиваем фланцы и нижний пояс. Конструируем крюки для подъема.

Устанавливаем крышки подшипников глухие (см. рис. 9.31) и сквозные для манжетных уплотнений (см. табл. 9.16). Под крышки устанавливаем металлические прокладки для регулировки.

Конструкцию червячного колеса выполняем по рис. 10.9, насаживая бронзовый венец на чугунный центр с натягом. Посалка H7/p6 по ГОСТ 25347—82.

Вычерчиваем призматические шпонки: на выходном конце вала червяка $b \times h \times l = 10 \times 8 \times 40$ мм, на выходном конце вала червячного колеса $b \times h \times l = 14 \times 9 \times 80$ мм и под червячным колесом $b \times h \times l = 18 \times 11 \times 80$ мм (см. табл. 8.9).

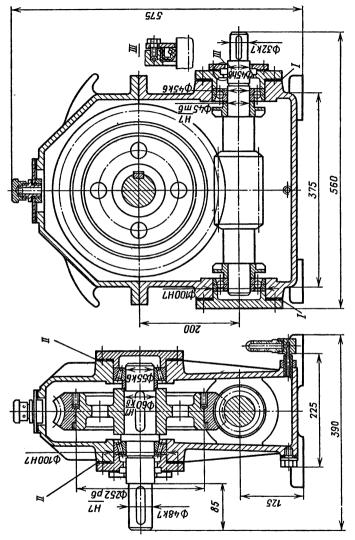


Рис. 12.25. Червячный редуктор с нижним расположением червяка

VIII. Тепловой расчет редуктора

Для проектируемого редуктора площадь теплоотводящей поверхности $A \approx 0.73 \text{ м}^2$ (здесь учитывалась также площадь днища, потому что конструкция опорных лап обеспечивает циркуляцию воздуха около днища).

По формуле (10.1) условие работы редуктора без перегрева при продолжительной работе

$$\Delta t = t_{\rm M} - t_{\rm B} = \frac{P_{\rm q} (1 - \eta)}{k_{\rm r} A} \leqslant [\Delta t],$$

где $P_{\rm q}=5~{\rm KBT}=5000~{\rm BT}-{\rm требуемая}$ для работы мощность на: червяке.

Считаем, что обеспечивается достаточно хорошая циркуляния воздуха, и принимаем коэффициент теплопередачи $k_t = 17~{\rm BT/(M^2\cdot ^\circ C)}.$ Тогда

$$\Delta t = \frac{5000 (1 - 0.82)}{17 \cdot 0.73} = \frac{5000 \cdot 0.18}{12.4} = 72.5^{\circ} > [\Delta t].$$

Допускаемый перепад температур при нижнем червяке $[\Delta t] = 60^{\circ}$.

Для уменьшения Δt следует соответственно увеличить теплоотдающую поверхность пропорционально отношению $\frac{\Delta t}{[\Delta t]} = 72,5/60$, сделав корпус ребристым (см. рис. 12.25 и 10.38).

IX. Проверка прочности шпоночных соединений

Проверочный расчет на смятие производят так же, как и в предыдущих примерах.

Здесь приведем проверку прочности лишь одного соединения, передающего вращающий момент от вала червячного колеса к муфте.

Диаметр вала в этом месте $d_{\rm B2}=48$ мм. Сечение и длина шпонки $b\times h\times l=14\times 9\times 80$ мм, глубина паза $t_1=5,5$ мм. Момент $T_{\rm K2}=T_2=517\cdot 10^3$ H·мм.

Напряжения смятия

$$\sigma_{\text{CM}} = \frac{2T_2}{d_{\text{B2}}(h - t_1)(l - b)} = \frac{2 \cdot 517 \cdot 10^3}{48(9 - 5.5)(80 - 14)} = 93.5 \text{ M}\Pi a < 6.5 < [\sigma_{\text{CM}}] \text{ (cm. § 8.4)}.$$

Х. Уточненный расчет валов

Червячный вал проверять на прочность не следует, так как размеры его поперечных сечений, принятые при конструировании после расчета геометрических характеристик ($d_1 = 80\,$ мм, $d_{a1} = 96\,$ мм и $d_{f1} = 60,8\,$ мм), значительно превосходят те, которые могли быть получены расчетом на кручение. Напомним, что диаметр выходного конца вала получился при расчете на кручение $18,7\,$ мм, а мы по соображениям конструирования приняли его $d_{B1} = 32\,$ мм (мы решили этот диаметр для удобства соединения принять равным диаметру вала электродвигателя).

Проверим стрелу прогиба червяка (расчет на жесткость). Приведенный момент инерции поперечного сечения червяка

$$J_{\rm np} = \frac{\pi d_{f1}^4}{64} \left(0.375 + 0.625 \frac{d_{a1}}{d_{f1}} \right) =$$

$$= \frac{\pi 60.8^4}{64} \left(0.375 + 0.625 \frac{96}{60.8} \right) = 92 \cdot 10^4 \text{ MM}^4$$

(формула известна из курсов «Сопротивление материалов» и «Детали машин»).

Стрела прогиба

$$f = \frac{l_1^3 \sqrt{F_{r_1}^2 + F_{r_1}^2}}{48EJ_{np}} =$$

$$= \frac{340^3 \sqrt{810^2 + 1160^2}}{48 \cdot 2.1 \cdot 10^5 \cdot 92 \cdot 10^4} =$$

$$= 0.00602 \text{ MM.}$$

Допускаемый прогиб $[f] = (0,005 \div 0,01) m = (0,005 \div 0,01) 8 = 0.04 \div 0.08 мм.$

Таким образом, жесткость обеспечена, так как

$$f = 0.00602 \text{ MM} < [f].$$

Определение коэффициентов запаса прочности в опасных сечениях вала червячного коле-

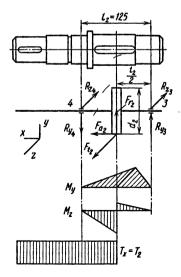


Рис. 12.26. Расчетная схема вала червячного колеса

са (рис. 12.26) следует проводить аналогично тому, как это выполнено для ведущего вала косозубого цилиндрического редуктора (см. § 12.1 и рис. 12.8).

В данном примере запасы прочности больше [s], так как диаметры участков вала, выбранные по условиям монтажа, значительно превышают расчетные.

XI. Посадки деталей редуктора и оформление чертежа

Выполнение этих позидий производится аналогично тому, как это сделано в примере §12.1. Следует добавить посадку бронзового венца на чугунный центр H7/p6.

XII. Выбор сорта масла

Смазывание зацепления и подшипников производится разбрызгиванием жидкого масла. По табл. 10.9 устанавливаем вязкость масла. При контактных напряжениях $\sigma_H = 129$ МПа и скорости скольжения $v_s = 6,15$ м/с рекомендуемая вязкость масла должна быть приблизительно равна $15 \cdot 10^{-6}$ м²/с. По табл. 10.10 принимаем масло авиационное МС-22.

XIII. Сборка редуктора

Перед сборкой внутреннюю полость корпуса тщательно очищают и покрывают маслостойкой краской. Сборку редуктора производят в соответствии с чертежом общего вида. Начинают сборку с того, что на червячный вал надевают крыльчатки и шариковые радиально-упорные подшипники, предварительно нагрев их в масле до $80-100\,^{\circ}$ С. Собранный червячный вал вставляют в корпус.

При установке червяка, выполненного за одно целое с валом, следует обратить внимание на то, что для прохода червяка его диаметр должен быть меньше диаметра отверстия для подшипников. В нашем случае наружный диаметр червяка $d_{a1} = 96$ мм, а наружный диаметр подшипников 46309 D = 100 мм.

В начале сборки вала червячного колеса закладывают шпонку и напрессовывают колесо до упора в бурт вала; затем надевают распорную втулку и устанавливают роликовые конические подшипники, нагретые в масле. Собранный вал укладывают в основании корпуса и надевают крышку корпуса, покрывая предварительно поверхности стыка фланцев спиртовым лаком. Для центровки крышку устанавливают на корпус с помощью двух конических штифтов и затягивают болты.

Закладывают в подшипниковые сквозные крышки резиновые манжеты и устанавливают крышки с прокладками.

Регулировку радиально-упорных подшипников производят набором тонких металлических прокладок *I* и *II* (см. рис. 12.25), устанавливаемых под фланцы крышек подшипников.

Для регулировки червячного зацепления необходимо весь комплект вала с червячным колесом смещать в осевом направлении до совпадения средней плоскости колеса с осью червяка. Этого добиваются переносом части прокладок II с одной стороны корпуса на другую. Чтобы при этом сохранилась регулировка подшипников, суммарная толщина набора прокладок II должна оставаться без изменения.

Ввертывают пробку маслоспускного отверстия с прокладкой и маслоуказатель. Заливают в редуктор масло и закрывают смотровое отверстие крышкой с отдушиной.

Собранный редуктор обкатывают и испытывают на стенде.

§ 12.7. РАСЧЕТ ОДНОСТУПЕНЧАТОГО ЧЕРВЯЧНОГО РЕДУКТОРА ОБЩЕГО ПРИМЕНЕНИЯ

Расчет основных параметров проведен при условии, что редуктор может быть использован для работы от определенного электродвигателя, а рабочая машина заранее неизвестна.

ЗАДАНИЕ НА РАСЧЕТ

Рассчитать червячный редуктор общего назначения от электродвигателя 4A 132 M2 У3 мощностью $P_{\text{дв}} = 11$ кВт с синхронной частотой вращения 3000 об/мин и скольжением 2,3 % к неизвестному потребителю (см. рис. 10.23).

Передаточное число редуктора u = 40.

РАСЧЕТ РЕДУКТОРА

Номинальные частоты вращения и угловые скорости валов редуктора

$$n_1 = n_{\text{дв}} = 3000 - 0,023 \cdot 3000 = 2931$$
 об/мин;
 $\omega_1 = \omega_{\text{дв}} = \frac{\pi n_1}{30} = \frac{3,14 \cdot 2931}{30} = 307$ рад/с;
 $n_2 = \frac{n_1}{u} = \frac{2931}{40} = 73$ об/мин;
 $\omega_2 = \frac{\omega_1}{u} = \frac{307}{40} = 7,7$ рад/с.

Вращающие моменты

$$T_1 = \frac{P_{\text{AB}}}{\omega_{\text{AB}}} = \frac{11 \cdot 10^3}{307} = 35.8 \text{ H} \cdot \text{M} = 35.8 \cdot 10^3 \text{ H} \cdot \text{MM}$$
:
 $T_2 = T_1 u \eta = 35.8 \cdot 10^3 \cdot 40 \cdot 0.75 = 1070 \cdot 10^3 \text{ H} \cdot \text{MM}$

где КПД ориентировочно принят $\eta = 0,75$.

Материалы для венца червячного колеса и червяка примем по табл. 4.8, полагая, что будет большая скорость скольжения $(v_s > 10 \text{ м/c})$, так как частота вращения червяка значительна — 2931 об/мин. В этом случае следует для венца червячного колеса принять оловянную бронзу, для которой допускаемое напряжение $[\sigma_H]$ не зависит от скорости скольжения. Для венца червячного колеса примем бронзу Бр010Ф1, отлитую в кокиль; для червяка — углеродистую сталь с твердостью HRC > 45. В этом случае по табл. 4.8 основное допускаемое контактное напряжение $[\sigma_H]' = 221 \text{ МПа.}$ Расчетное допускаемое напряжение $[\sigma_H] = [\sigma_H]' K_{HL}$ (см. с. 66); где коэффициент долговечности примем по его минимальному значению $K_{HL} = 0,67$ (см. с. 67). Тогда

 $\lceil \sigma_{H} \rceil = 221 \cdot 0.67 = 148 \text{ M}\Pi a.$

Число витков червяка z_1 принимаем в зависимости от передаточного числа: при u=40 принимаем $z_1=1$ (см. с. 55). Число зубьев червячного колеса

$$z_2 = z_1 u = 1 \cdot 40 = 40.$$

Принимаем предварительно коэффициент диаметра червяка q=10 и коэффициент нагрузки K=1,2.

Определяем межосевое расстояние из условия контактной прочности [см. формулу (4.19)]:

$$a_{w} = \left(\frac{z_{2}}{q} + 1\right) \sqrt[3]{\left(\frac{170}{\frac{z_{2}}{q} \left[\sigma_{H}\right]}\right)^{2} T_{2}K} =$$

$$= \left(\frac{40}{10} + 1\right) \sqrt[3]{\left(\frac{170}{\frac{40}{10} \cdot 148}\right)^{2} 1070 \cdot 10^{3} \cdot 1, 2} = 50 \sqrt[3]{\left(\frac{170}{592}\right)^{2} 1280} =$$

$$= 236 \text{ MM}.$$

Модуль

$$m = \frac{2a_w}{z_2 + a} = \frac{2 \cdot 236}{40 + 10} = 9,45$$
 MM.

Принимаем по ГОСТ 2144 – 76 (табл. 4.1 и 4.2) стандартные значения m=10 мм и q=10, а также $z_2=40$ и $z_1=1$.

Тогда пересянтываем межосевое расстояние по стандартным значениям $m,\ q$ и z_2 :

$$a_w = \frac{m(z_2 + q)}{2} = \frac{10(40 + 10)}{2} = 250$$
 mm.

Межосевое расстояние $a_{\rm w}=250\,$ мм тоже получилось стандартным.

Основные размеры червяка:

делительный диаметр червяка

$$d_1 = qm = 10 \cdot 10 = 100$$
 MM;

диаметр вершин витков червяка

$$d_{a1} = d_1 + 2m = 100 + 2 \cdot 10 = 120$$
 MM;

диаметр впадин витков червяка

$$d_{f1} = d_1 - 2,4m = 100 - 2,4 \cdot 10 = 76$$
 mm;

длина нарезанной части шлифованного червяка [см. формулу (4.7)]

$$b_1 \ge (11 + 0.06z_2) m + 35 = (11 + 0.06 \cdot 40) 10 + 35 \approx 170 \text{ MM};$$

делительный угол подъема γ по табл. 4.3: при $z_1=1$ и q=10 угол $\gamma=5^{\circ}43'$.

Основные размеры венца червячного колеса: делительный диаметр червячного колеса

$$d_2 = z_2 m = 40 \cdot 10 = 400 \text{ MM};$$

диаметр вершин зубьев червячного колеса

$$d_{a2} = d_2 + 2m = 400 + 2 \cdot 10 = 420$$
 MM;

диаметр впадин зубьев червячного колеса

$$d_{12} = d_2 - 2.4m = 400 - 2.4 \cdot 10 = 376$$
 mm;

наибольший диаметр червячного колеса

$$d_{aM2} \le d_{a2} + \frac{6m}{z_1 + 2} = 420 + \frac{6 \cdot 10}{1 + 2} = 440 \text{ MM};$$

ширина венца червячного колеса [см. формулу (4.12)]

$$b_2 \le 0.75d_{a1} = 0.75 \cdot 120 = 90$$
 MM.

Окружная скорость червяка

$$v_1 = \frac{\pi d_1 n_1}{60} = \frac{3,14 \cdot 100 \cdot 10^{-3} \cdot 2931}{60} = 15,4 \text{ m/c}.$$

$$v_{\rm s} = \frac{v_1}{\cos \gamma} = \frac{15,4}{\cos 5^{\circ}43'} \approx 15,5$$
 m/c.

Предположение, что скорость скольжения будет более 10 м/с; оправдалось. Поэтому для венца червячного колеса была выбрана оловянная бронза.

Уточняем КПД редуктора [см. формулу (4.14)].

По табл. 4.4 при скорости $v_s \approx 15.5$ м/с при шлифованном червяке приведенный угол трения $\rho' \approx 1^\circ$.

КПД редуктора с учетом потерь в опорах, потерь на разбрызгивание и перемешивание масла

$$\eta = (0.95 \div 0.96) \frac{\text{tg } \gamma}{\text{tg } (\gamma + \rho')} = (0.95 \div 0.96) \frac{\text{tg } 5^{\circ}43'}{\text{tg } 6^{\circ}43'} = 0.79.$$

По табл. 4.7 выбираем 7-ю степень точности передачи и находим значение коэффициента динамичности $K_v = 1,25$ (в таблице скорости скольжения приведены только до 12 м/с).

Коэффициент неравномерности распределения нагрузки [см. формулу (4.26)]

$$K_{\beta}=1+\left(\frac{z_2}{\theta}\right)^3(1-x).$$

В этой формуле:

коэффициент деформации червяка θ — по табл. 4.6; в зависимости от q=10 и $z_1=1$ он равен $\theta=108$. При незначительных колебаниях нагрузки вспомогательный коэффициент x=0.6 (см. c. 65);

$$K_{\beta} = 1 + \left(\frac{40}{108}\right)^3 (1 - 0.6) \approx 1.02.$$

Коэффициент нагрузки

$$K = K_6 K_v = 1,02 \cdot 1,25 \approx 1,27.$$

Проверяем контактное напряжение [см. формулу (4.23)]:

$$\sigma_{H} = \frac{170}{\frac{z_{2}}{q}} \sqrt{\frac{T_{2}K\left(\frac{z_{2}}{q}+1\right)^{3}}{a_{w}^{3}}} = \frac{170}{4} \sqrt{\frac{1070 \cdot 10^{3} \cdot 1,27 \cdot 5^{3}}{250^{3}}} =$$

$$= 42,5 \sqrt{\frac{1360 \cdot 10^{3} \cdot 125}{15,8 \cdot 10^{3} \cdot 10^{3}}} = \frac{42,5 \cdot 36,8 \cdot 11,2}{3,97 \cdot 31,7} = \frac{17500}{126} =$$

$$= 139 \text{ M}\Pi a < [\sigma_{H}] = 148 \text{ M}\Pi a.$$

Проверяем прочность зубьев червячного колеса на изгиб. Эквивалентное число зубьев

$$z_v = \frac{z_2}{\cos^3 \gamma} = \frac{40}{(\cos 5^\circ 43')^3} = 40.5.$$

Коэффициент формы зуба по табл. 4.5 $Y_F = 2,265$. Напряжение изгиба

$$\sigma_F = \frac{1,2T_2KY_F}{z_2b_2m^2} = \frac{1,2 \cdot 1070 \cdot 10^3 \cdot 1,27 \cdot 2,265}{40 \cdot 90 \cdot 10^2} = 11,8 \text{ M}\Pi a.$$

Основное допускаемое напряжение изгиба для реверсивной работы по табл. 4.8 $[\phi_{-1F}]' = 51$ МПа.

Расчетное допускаемое напряжение $[\sigma_{-1F}] = [\sigma_{-1F}]' K_{FL}$. Коэффициент долговечности примем по его минимальному значению $K_{FL} = 0.543$ (см. с. 67).

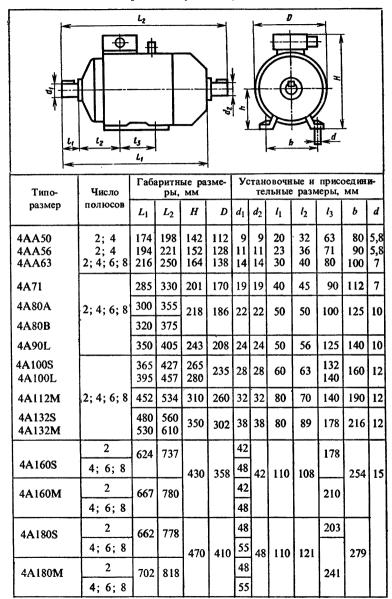
Таким образом $[\sigma_{-1F}] = 51 \cdot 0,543 = 27,6$ МПа. Прочность обеспечена, так как $\sigma_F < [\sigma_{-1F}].$

Расчет валов и подшипников и эскизные компоновки выполняем так же, как и в предыдущем примере. При компоновке учитываем, что в данном примере червячный редуктор имеет верхний червяк и смазывание зацепления происходит путем погружения зубьев червячного колеса в масло и разбрызгивания его (в этом случае в крыльчатках нет необходимости). Следует иметь в виду, что некоторые узлы редуктора с верхним червяком отличаются от узлов редуктора, в котором червяк расположен снизу.

приложения

П1. Электродвигатели асинхронные серии 4A, закрытые обдуваемые (по ГОСТ 19523-81)

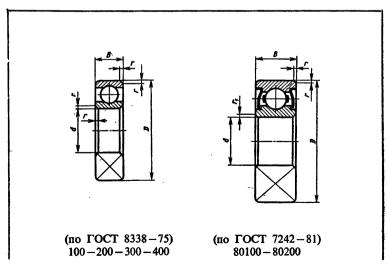
		Синхроні	ная ча	стота	а вращения, об/мин							
Мощ-	3000			1500			1000			750		
ность, кВт	Типо- размер	s, %	$\frac{T_{\rm B}}{T_{\rm H}}$	Типо- размер	s, %	$\frac{T_{\Pi}}{T_{H}}$	Типо- размер	s, %	$\frac{T_{\rm n}}{T_{\rm n}}$	Типо- размер	s, %	$\frac{T_{\rm n}}{T_{\rm H}}$
0,55 0,75 1,1 1,5 2,2 3,0 4,0 5,5 7,5 11,0 15 18,5 22 30 37 45 55 75 90	63B2 71A2 71B2 80A2 80B2 90L2 100S2 100L2 112M2 132M2 160S2 160M2 180S2 180M2 200M2 200L2 255M2 250S2	8,5 5,9 6,3 4,2 4,3 3,3 3,4 2,5 2,1 2,1 2,0 1,9 1,9 1,8 1,4 1,4	1,6 1,4	160S4 160M4 180S4 180M4 200M4 200LA 225M4 250S4 250M4	7,3 7,5 5,4 5,8 5,1 4,4 4,7 3,7 3,0 2,8 2,3 2,2 2,0 1,9 1,7 1,6 1,4 1,2 1,3	1,4	71B6 80A6 80B6 90L6 100L6 112MB6 132S2 132M6 160S6 160M6 200M6 200L6 225M6 250S6 250M6 280S6 280S6	10 8,4 8,0 6,4 5,1 4,7 5,1 3,3 3,2 2,7 2,6 2,7 2,8 1,4 1,3 2,0 2,0	2,0	112M8 132S8 132M8 160S8 160M8 180M8 200M8 200L8 225M8 250S3 250M8 280S8 280M8 315S8	9 8,4 7,0 6,0 5,8 4,1 4,1 2,5 2,5 2,5 2,3 2,7 1,8 1,5 1,4 2,2 2,2 2,2 2,2	1,6
110	280S2	2,0		280S4	2,3		315S6	2,0		315M8	2,0	


Примечания. 1. Пример условного обозначения электродвигателя мощностью 11 кВт, синхронная частота вращения 1500 об/мин.

Электродвигатель 4А132М4У3

- 2. Значения символов в условных обозначениях: цифра 4 указывает порядковый номер серии, буква А род двигателя асинхронный Следующие за буквой А числа (двух- или трехзначные) соответствуют высоте оси вращения, мм; буквы L, S и М относятся к установочным размерам по длине станоны; буквы А и В условные обозначения длины сердечника статора. Цифры 2, 4, 6 и 8 означают число полюсов. Последние два знака УЗ показывают, что двигатель предназначен для эксплуатации в зоне умеренного климата.
- ренного климата.

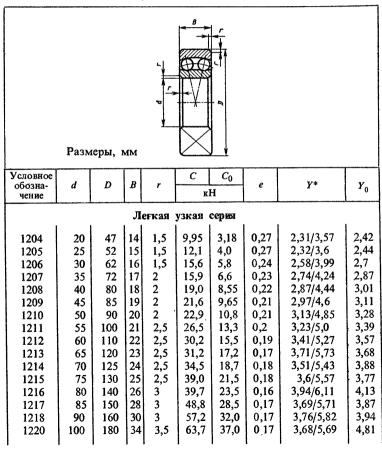
 3. В графе s указано скольжение, %; в графе $\frac{T_{\rm n}}{T_{\rm H}}$ даны значения отношения величин пускового и номинального вращающих моментов.
- Габаритные и установочные размеры двигателей серии 4А даны в табл. П2.


П2. Электродвигатели серии 4А.
Исполнение закрытое обдуваемое (по ГОСТ 19523—81)

Типо-	Число	Габаритные размеры, мм				Установочные и присоедини- тельные размеры, мм						
размер	полюсов	$L_{\mathbf{l}}$	L ₂	H	D	d_1	d_2	l ₁	l_2	<i>l</i> ₃	ь	d,
4A200M	2	760	875	535	450	55		110	133	267 305	318	19
	4; 6; 8	780	905			60	55	140	133			
4A200L	2	800	915			55		110	133			19
	4; 6; 8	830	945			60		140				
4A225M	2	810	925	575	491	55	55	110	149	311	356 406	19
,	4; 6; 8	840	985			65	60	140				
4A250S	2	915	1060	610	554	65	65	140	168			
	4; 6; 8					75	70					
4A250M	2	955	1100	610	554	65	65	140	168	349	406	24
	4; 6; 8					75	70					

ПЗ. Шарикоподшинники радиальные однорядные

Размеры, мм

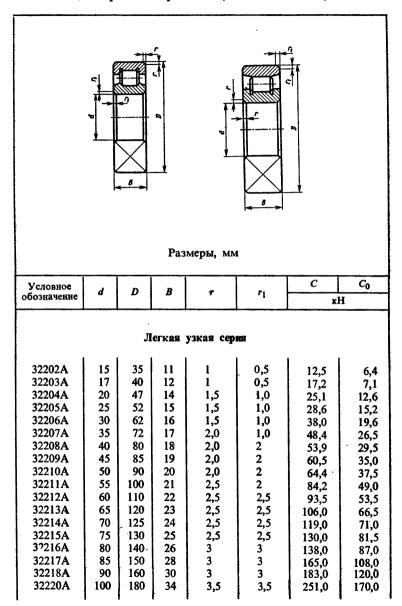


	1111000									
Vene	Условное		D			Грузоподъемность, кН				
1	обозначение			В	r	динами-	стати-			
000311						ческая С	ческая C_{θ}			
		نــــــا								
		•	Эсобол	егкая	серия					
100					!					
100	-	10	26	8	0,5	4,62	1,96			
101	-	12	28	8	0,5	5,07	2,24			
104	80104	20	42	12	1	9,36	4,5			
105	-	25	47	12	1	11,2	5,6			
106	80106	30	55	13	1,5	13,3	6,8			
107	-	35	62	14	1,5	. 15,9	8,5			
108	80108	40	68	15	1,5	16,8	9,3			
109	_	45	75	16	1,5	21,2	12,2			
110	-	50	80	16	1,5	21,6	13,2			
111	_	55	90	18	2	28,1	17			
112	_	60	95	18	2	29,6	18,3			
113	-	65	100	18	2	30,7	19,6			
114	_	70	110	20	2	37,7	24,5			
115	- '	75	115	20	2	39,7	26,0			
116	-	80	125	22	2	47,7	31,5			
117	_	85	130	22	2	49,4	33,5			
118		90	140	24	2,5	57,2	39,0			
119	_	95	145	24	2,5	60,5	41,5			
120	-	100	150	24	25	60,5	41,5			
1			_							
			Jler	кая се	рпя					
200	80200	10	30	9	1	5,9	2,65			
201	80201	12	32	10	ī	6,89	3,1			
202	80202	15	35	11	1	7,8	3,55			
203	80203	17	40	12	1	9,56	4,5			
204	80204	20	47	14	1,5	12,7	6,2			
205	80205	25	52	15	1,5	14,0	6,95			
206	80206	30	62	16	1,5	19,5	10,0			
207	-	35	72	17	2	25,5	13,7			
208	80208	40	80	18	2	32,0	17,8			
209	80209	45	85	19	2	33,2	18,6			
209A	-	45	85	19	2	36,4	20,1			
210	-	50	90	20	2	35,1	19,8			
211	_	55	100	21	2,5	43,6	25,0			
212	80212	60	110	22	2,5	52,0	31,0			
213	80213	65	120	23	2,5	56,0	34,0			
214	_	70	125	24	2,5	61,8	37,5			
215	80215	75	130	25	2,5	66,3	41,0			
216	-	80	140	26	3	70,2	45,0			
217	-	85	150	28	3	83,2	53,0			
				-	-	•	•			

r			1	· · · · ·		I	Грузоподъемность, кН					
l	Условное		1		l	1						
Į		ачение	đ	D,	B	r	динами-	стати- ческая				
l	00001				İ	ļ	ческая С	Co				
ŀ												
t	217A	-	85	150	28	3	89,5	56,5				
1	218	80218	90	160	30	3	95,6	62,0				
ŀ	219	-	95	170	32	3,5	108,0	69,5				
l	219A	-	95	170	32	3,5	115,0	74,0				
۱	220	80220	100	180	34 l	3,5	124,0	79,0				
١												
l	Средвяя серия											
۱	300		10	35	11	1	8,06	3,75				
۱	301		12	37	12	1,5	9,75	4,65				
Ì	302		15	42	13	1,5	11,4	5,4				
	303		17	47	14	1,5	13,5	6,65				
I	304		20	52	15	2	15,9	7,8				
	305		25	62	17	2	22,5	11,4				
١	306		30	72	19	2	28,1	14,6				
١	307		35	80	21	. 2,5	33,2	18,0				
ı	308		40	90	23	2,5	41,0	22,4				
١	309		45	100	25	2,5	52,7	30,0				
١	310		50	110	27	3	65,8	36,0				
1	311		55	120	29	3	71,5	41,5				
1	312		60	130	31	3,5	81,9	48,0				
1	313		65	140	33	3,5	92,3	56,0				
۱	314		70	150	35	3,5	104,0	63,0				
l	315		75	160	37	3,5	112,0	72,5				
1	316		80	170	39	3,5	124,0	80,0				
İ	316K5		80	170	39	3,5	130,0	89,0				
١	317		85	180	41	4	133,0	90,0				
١	318		90	190	43	4	143,0	99,0				
١	319		95	200	45	4	153,0	110				
I	319K5		95	-200	45	4	161,0	120,0				
1	320		100	215	47	4	174,0	132,0				
I				_								
I			ı	Тяже.	лая сер) HST						
	403		17	62	17	2	22,9	11,8				
1	405		25	80	21	2,5	36,4	20,4				
1	406		30	90	23	2,5	47,0	26,7				
	407		35	100	25	2,5	55,3	31,6				
	408		40	110	27	3	63,7	36,5				
1	409		45	120	29	3	76,1	45,5				
	410		50	130	31	3,5	87,1	52,0				
1	411		55	140	33	3,5	100,0	63,0				
	412		60	150	35	3,5	108,0	70,0				
			•		•		•	•				

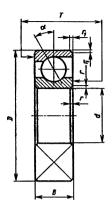
					Грузоподъемность, кН				
Условное обозна чение	d	D	B r		динамичес- кая С	статиче- ская C_0			
413	65	160	37	3,5	119,0	78,1 ⁻			
414	70	180	42	4	143,6	105,0			
416	80	200	48	4	163,0	125,0			
417	85	210	52	5	174,0	135,0			

П4. Шарикоподшилники радиальные сферические двухрядные (по ГОСТ 5720-75)



	IIpoonoice II.											
Условное обозна- чение	d	D	В	r	C K	<i>С</i> ₀ Н	e	Y.*	Y ₀			
					L							
			Jler	кая ш	крокая	серня						
1500	10	30	14	1	7,28	1,76	0,65	0,97/1,5	1,02			
1506	30	62	20	1,5	15,3	5,7	0,39	1,59/2,47	1,67			
1507	35	72	23	2	21,6	8,2	0,37	1,69/2,62	1,77			
1508	40	80	23	2	22,5	9,4	0,33	1,9/2,99	1,99			
1509	45	85	23	2	23,4	10,7	0,31	2,06/3,18	2,16			
1510	50	90	23	2	23,4	11,5	0,28	2,2/3,41	2,31			
1516	80	140	33	· 3	48,8	27,0	0,25	2,39/3,85	2,61			
1517	85	150	36	3	58,5	31,5	0,25	2,48/3,84	2,60			
1			Ср	едняя	узкая (серня						
			- ا ـ . ا		ا م م ا	- 			۱			
1304-	20	52	15	2	12,5	3,66	0,29	2,17/3,35	2,27			
1305	25	62	17	2	17,8	6,0	0,28	2,26/3,49	2,36			
1306	30	72	19	2	21,2	7,7	0,26	2,46/3,8	2,58			
1307 1308	35 40	80 90	21 23	2,5	25,1 29,6	9,8	0,25	2,57/3,98	2,69			
1308	40	100	25	2,5 2,5	29,6 37,7	12,2	0,24	2,61/4,05	2,74			
1310	50	110	27	3	43,6	15,9 17,5	0,24 0,24	2,54/3,93 2,69/4,14	2,66			
1311	55	120	29	3	50,7	23,5	0,24	2,09/4,14	2,8 2,82			
1312	60	130	31	3,5	57,2	26,5	0,23	2,8/4,83	2,93			
1313	65	140	33	,3,5	61,8	29,5	0,23	2,8/4,83	2,93			
1314	70	150	35	3,5	74,1	35,5	0,22	2,81/4,35	2,95			
1315	75	160	35	3,5	79,3	38,5	0,22	2,84/4,39	2,97			
1316	80	170	37	3,5	88,4	42,0	0,22	2,92/4,52	3,06			
1317	85	180	41	4	97,5	48,5	0,22	2,90/4,49	3,04			
			! ! 		•		•	1 -,, -,	, -,			
			Сред		ирок ая '	серия	! !	ì				
1605	25	62	24	2	24,2	7,5	0,47	1,34/2,07	1,4			
1606	30	72	27	2	31,2	10,0	0,44	1,43/2,22	1,5			
1607	35	80	31	2,5	39,7	12,9	0,46	1,36/2,11	1,43			
1608	40	90	33	2,5	44,9	15,7	0,43	1,46/2,25	1,52			
1609	45	100	36	2,5	54,0	19,4	0,42	1,51/2,33	1,58			
1610	50	110	40	3	67,7	23,6	0,43	1,48/2,29	1,55			
1611	55	120	43	3	76,1	28,0	0,41	1,53/2,36	1,6			
1612	60	130	46	3,5	87,1	33,0	0,4	1,56/2,41	1,63			
1613	65	140	48	3,5	95,6	38,5	0,38	1,65/2,55	1,73			
1614	70	150	51	3,5	111,1	44,5	0,38	1,68/2,59	1,76			
1616	80	170	58	3,5	135,0	58,0	0,37	1,68/2,61	1,76			
					$\frac{F_a}{}$			F_a				
* Знач	ения У	в числ	пите.	пе для	 «	е, в зн	аменат	еле для ^ a >	> e.			

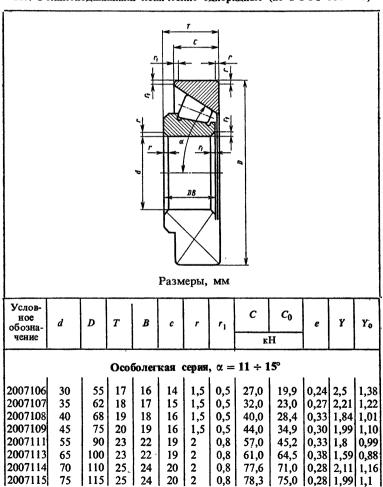
^{*} Значения Y: в числителе для $\frac{F_a}{VF_r} \leqslant e$, в знаменателе для $\frac{F_a}{VF_r} > e$. Примечание. При $\frac{F_a}{VF_r} \leqslant e$ X=1,0; при $\frac{F_a}{VF_r} > e$ X=0,65.


396

П5. Роликоподшишники радиальные с короткими цилиндрическими роликами (по ГОСТ 8328 – 75)

						11p.500m	mountae 11
Условное	d	D	В	r		С	C_0
обозначение	u		В	,	rı	K.	Н
		•					
		Ср	едняя	узкая сері	29		
32306A	30	72	19	2	2	51,2	26,0
32307A	35	80	21	2,5	2	64,4	35,0
32308A	40	90	23	2,5	2,5	80,9	44,5
32309A	45	100	25	2,5	2,5	99,0	56,0
32310A	50	110	27	3	3	110,0	70,5
32311A	55	120	29	3	3	138,0	87,5
32312A	60	130	31	3,5	3,5	151,0	98,0
32313A	65	140	33	3,5	3,5	183,0	197,0
32314A	70	150	35	3,5	3,5	205,0	124,0
32315A	75	160	37	3,5	3,5	242,0	149,0
32316A	80	170	39	3,5	3,5	260,0	163,0
32317A	85	180	41	4	4	297,0	190,0
32318A	90	190	43	4	4	319,0	260,0
32319A	95	200	45	4	4	374,0	222,0
32320A	100	215	47	4	4	391,0	250,0
		Ле	гкая ш	шрокая се	PMS		
2505A	25	52	18	1,5	1	34,1	18,8
2506A	30	62	20	1,5	1	38,0	28,0
2508A	40	80	23			56,1	42,0
2509A	45	85	23	2 2	2 2	73,7	45,5
2510A	50	90	23	2	2	78,1	48,5
2511A	55	100	25	2,5	2 2	99,0	64,0
2512A	60	110	28	2,5	2,5	128,0	85,0
2512A 2513A	65	120	31	2,5	2,5	147,0	100,0
201011	33	1 -20	J.	-,5	- ,5	147,0	100,0

Пб. Шарикоподшипники радиально-упорные однорядные (по ГОСТ 831 — 75).

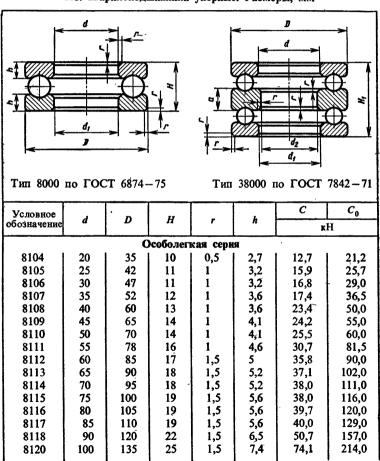

Размеры, мм

Условное обозна-	d	D	В	T	r	<i>r</i> 1	С	C_0
чение						,,	к	H
		Oca	So verv	ая сері	ag ~ ~	- 12°		
			ooyer K	an cepi	и л, О. —			
36104	20	42	12	12	1	0,5	10,6	5,32
36105	25	47	12	12	1	0,5	11,8	6,29
35106	30	55	13	13	1,5	0,5	15,3	8,57
36107	35	62	14	14	1,5	0,5	19,1	11,3
Į.		TF				100		
		легк	ая узк	ая сер	ия, α =	= 12°		
36204	20	47	14	14	1,5	0,5	15,7	8,31
36205	25	52	15	15	1,5	0,5	16,7	9,10
36206	30	62	16	16	1,5	0,5	22,0	12,0
36207	35	72	17	17	2	1	30,8	17,8
36208	40	80	18	18	2	1	38,0	23,2
36209	45	85	19	19	2	1	31,2	25,1
36210	50	90	20	20	2	1	43,2	27,0
36211	55	100	21	21	2,5	1,2	58,4	34,2
36212	60	110	22	22	2,5	1,2	61,5	39,3
36214	70	125	24	24	2,5	1,2	80,2	54,8
36216	80	140	26	26	3	1,5	93,6	65,0
36217	85	150	28	28	3 3 3	1,5	101,0	70,8
36218	90	160	30	30		1,5	118,0	83,0
36219	95	170	32	32	3,5	2	134,0	95,0
I	l	l	i	1	l	1	ĺ	1 1

Условное обозна-	d	D	В	Т	r	r_1	С	C ₀
чен ие	· ·		ь			'1	ĸ	Н
		Средн	IEV RRI	сая сер	ия, α =	= 12°		
26202	ا ا	42	1					
36302 36303	15 17	42	13 14	13 14	1,5	0,5	13,6	6,80
36308	40	90	23	23	1,5 2,5	0,5	17,2 53,9	8,70 32,8
36318	90	190	43	43	4	1,2	189,0	145,0
		Средн	ISS V3E	сая сер	ия. « =	= 26°	·	·
	[1			1	I	ı	1
46303	17	47	14		1,5	0,5	16,10	8,0
46304	20	52	15		2	1	17,8	9,0
46305	25	62	17	1	2	1	26,9	14,6
46306	30	72	19	1	2	1	32,6	18,3
46307	35	80	21 23		2,5	1,2	42,6	24,7
46308	40	90		l	2,5	1,2	50,8	31,1
46309	45	100	25		. 2,5	1,2	61,4	37,0
46310	50 60	110 130	27 31		3	1,5	71,8	44,0
46312 46313	65	140	33		3,5	2 2	100,0	65,3
46313	70	150	35		3,5	2	113,0	75,0
46316	80	170	39	į	3,5	2	127,0	85,3 99,0
46318	90	190	43	ł	3,5	2	136,0 165,0	
46320	100	215	47		4	2	213.0	122,0 177,0
	•	Топт		Кая сеј		36°	. ,	
		Jierk	кая узі і	ким сеј 1	ини, ОС: 1	= 30		1
66207	35	72	17		2,5	1,2	17,0	14,7
66211	55	100	21	1	2,5	1,2	46,3	28,4
66215	75	130	25		2,5	1,2	71,5	49,0
66219	95	170	32	1	3,5	2	121,0	85,0
66221	105	190	l 36	į	3,5	2	148,0	108,0
		Сред	няя уз	кая се	рия, α	= 36°		
66309	45	100	25	1	3	1,5	60,8	36,4
66312	60	130	31	1	3,5	2	93,7	58,8
66314	70	150	35	l	3,5	2	119,0	76,8
		Тяже.	лая уз	кая се	рия, α	= 36°		
66406	30	90	23		2,5	1,2	43,8	27,0
66408	40	110	27	1	3	1,5	72,2	42,3
66409	45	120	29		3	1,5	81,6	47,3
66410	50	130	31	1	3,5	2	98,9	60,1
I	ı	1	ł	1	1	1	1	1

Условное обозначе-	d	D	В	т	e	P.	С	C_0
ние	"	D	В	1	,	′1	кН	
66412	-60	150	35		3,5	2	125,0	79,5
66414 66418	70 90	180 225	42 54		4 5	2,5	152,0 208,0	109,0 162,0
					_	-,-	200,0	102,0

П7. Роликоподшипники конические однорядные (по ГОСТ 333-79)



Услов- ное обозна- чение	d	D	Т	В	с	r	<i>r</i> 1	C	C ₀	e	Y	Ϋ́α	1
								N.				ļ	
2007116	80	125	29	27	23	2	0,8	102,0	93,0	0,34	1,77	0,97	
2007118	90	140	32	30	26	2,5	0,8	128,0	111,0	0,34	1,76	0,97	
2007119	95	145	32	30	26	2,5	0,8	130,0	115,0		1,69	0,93	l
2007120	100	150	32	30	26	2,5	0,8	132,0	120,0	0,37	1,62	0,89	
			Л	егкая	т сер	ня, α	= 12	2 ÷ 18°					
. 1			ı		1		1	1			i	1	
7202	15	35	11,75	11	9	1,0	0,3	10,5	6,1	0,45	"	0,73	l
7203	17	40	13,25	12	11	1,5	0,5	14,0	9,0	0,31	1 ′	1,05	
7204	20	47	15,25	14	12	1,5	0,5	21,0	13,0	0,36		0,92	١
7205	25	52	16,25	15	13	1,5	0,5	24,0	17,5	0,36			
7206	30	62	17,25	16	14	1,5	0,5	31,5	22,0	0,36	1,64		
7207	35	72	18,25	17	15	2,0	0,8	38,5	26,0	0,37	1,62		١
7208	40	80	19,25	19	16	2,0	0,8	46,5	32,5	0,38	1,56	1 '	l
7209	45	85	20,75	20	16	2,0	0,8	50,0	33,0	0,41	1,45		١
7210	50	90	21,75	21	17	2,0	0,8	56,0	40,0	0,37	1,6	0,88	ı
7211	55	100	22,75	21	18	2,5	0,8	65,0	46,0	0,41	1,46	1 '	l
7212	60	110	23,75	23	19	2,5	0,8	78,0	58,0	0,35		0,94	ł
7214	70	125	25,25	26	21	2,5	0,8	96,0	82,0	0,37			1
7215	75	130	27,25	26	22	2,5	0,8	107,0	84,0	0,39			
7216	80	140	28,25	26	22	3,0	0,8	112,0	95,2	0,42			
7217	85	150	30,50	28	24	3,0	1,0	130,0	109,0	0,43	1,38		1
7218	90 95	160	32,50	31	26	3,0	1,0	158,0	125,0	0,38			ł
7219 7220	100	170	34,50 37,00	32 34	27 29	3,5	1,0	168,0 185,0	131,0	0,41	1 '	0,81	
1220	1 100	1100		•	•			. ,		10,41	11,49	10,62	1
	ı	1	ı	Среди І	ЯЯ С6 	Ī	ı	10 ÷ 14 1	1	ı	1	ı	
7304	20	52	16,25	16	13	2,0	0,8	26,0	17,0	0,3	2,03	1,11	I
7305	25	62	18,25	17	15	2,0	0,8	33,0		0,36	1,67	0,92	١
7306	30	72	20,75	19	17	2,0	0,8	43,0	29,5	0,34	0,78	0,98	ŀ
7307	35	80	22,75	21	18	2,5	0,8	54,0	1 1	0,32	1 '	1,03	١
7308	40	90		23	20	2,5	0,8	66,0		0,28		1,18	1
7309	45	100	27,25	26	22	2,5	0,8	83,0		0,28			
7310	50.	110		29	23	3,0	1,0	100,0	75,0				
7311	55	120		29	25	3,0	1,0	107,0		0,33		0,99	- 1
7312	60	130	1 '	31	27	3,5	1,2	128,0		0,3	1,97	1 '	•
7313	65	140		33	28	3,5	1,2	146,0		0,3	1,97	1 '	-1
7314	70	150	1 -	37	30	3,5	1,2	170,0	137,0				- 1
7315	75	160	, ,	37	31	3,5	1,2	180,0	1 '	0,33	1 '	1	- 1
7317	85	180	1 '	41	35	4,0	1,5	230,0	1	0,31			- 1
7318	90	190	46,5	43	36	4,0	1,5	250,0	201,0	0,32	1,88	3 1,03	1
I	I	ı	1	ı	I	ı	ı	1 ,	i	ı	ľ	Ī	I

						1		1	-		1	
Услов- ное	d	D	$_{T}$	В	c		ا _ ا	C	C_0			<u>, </u>
обозна-	a	υ	1	<i>B</i>	c	r	rı			е	Y	Y
чение								ĸŀ	1			
		C	редня	s mai	рокая	сери	ıя, α	= 11 ÷	16°			
7604	20	52	22,25	21,0	18,5	2	0,8	31,5	22,0	0,3	2,01	1.11
7605	25	62	25,25	24,0	21,0	2	0,8	47,5	36,6	0,27	2,19	1,21
7606	30	72	28,75	29,0		2	0,8	63,0	51,0	0,32		1,03
7607	35	80	32,75	31,0		2,5	0,8	76,0	61,5	0,3	2,03	1,11
7608	40	90	35,25	33,0	28,5	2,5	0,8	90,0	67,5	0,3	2,03	1,11
7609	45	100	38,25	36,0	31,0	2,5	0,8	114,0	90,5	0,29		1,13
7611	55	120	45,5	44,5	36,5	3,0	1,0	160,0	140,0	0,32		1,02
7612	60	130	48,5	47,5	39,0	3,5	1,2	186,0	157,0	0,3	1,97	1,08
7613	65	140	51,0	48,0	41,0	3,5	1,2	210,0	168,0	0,33	1 ′	1,01
7614	70	150	54,0	51,0		3,5	1,2	240,0	186,0	0,35		0,94
7615	75	160	58,0	55,0		3,5	1,2	280,0	235,0	0,3	1,99	1,20
7616	80	170	61,5	59,5		3,5	1,2	310,0	290,0	0,32		1.04
7618	90	180	67,5	66,5	, ,	4,0	1,5	370,0	365,0	0.3	1,99	1,2
7620	100		77,5	, ,	61,5		,		460,0			
, , , ,			, .	,.	,.	.,.	-,0	,.	,.	-,	-,	-,
			Легкая	шир	окая	сери	я, α	= 12 ÷	16°			
7506	30	62	21,35	20,5	17	1,5	0,5	36,0	27,0	0,36	1,64	0,9
7507	35	72	24,25	23	20	2,0	0,8	53,0	40,0	0,35		
7508	40	80	24,75	23,5	20	2,0	0,8	56,0	44,0	0,38		
7509	45	85	24,75	23,5	20	2,0	0,8	60,0	46,0	0,42	1,44	0,79
7510	50	90	24,75	23,5	20	2,0	0,8	62,0	54,0	0,42	1,43	0,78
7511	55	100	26,75	25	21	2,5	0,8	80,0			1,67	0,92
7512	60	110	29,75	28	24	2,5	0,8	94,0	75,0		1,53	0,84
7513	65	120	32,75	31	27	2,5	0,8	110,0	98,0		1,62	0,89
7514	70	125	33,25	31	27	2,5	0,8	125,0	101,0			0,85
7515	75	130	33,25	31	27	2,5	0,8	130,0	108,0			
7516	80	140	35,25	33	28	3,0	1,0	143,0	126,0	0,40	1,49	0,82
7517	85	150	38,50	36	30	3,0	1,0	162,0		0,39		0,85
7518	90	160	42,5	40	34	3,0	1,0	190,0	171,0	0,39	1,55	0,85
7519	95	170	45,5	45,5	37	3,5	1,2	230,0	225,0	0,38	1,56	0,85
7520	100	180	49,0	46,0	39	3,5	1,2	250,0	236,0	0,41	1,49	0,82
1	ı		Легкая І	шир	окая І	ı	ει, α: Ι	= 12 ÷	16°	1		ı
7506A	30	62	21,25	20	17	1,5	0,5	47,3	37,0	0,37	1,6	0,9
7509A	45	85	24,75	23	19	2,0	0,8	74,8	60,0		1,5	0,8
7510A	50	90	24,75	23	19	2,0	0,8	76,5		0,43	1,4	0,8
7511A	55	100	26,75	25	21	2,5	0,8	99,0	80,0	0,4	1,5	0,8
7512A	60	110	29,75	28	24	2,5	0,8	120,0		0,4	1,5	0,8
7513A	65	120	32,75	31	27	2,5	0,8	142,0			1,5	0,8

Услов- ное обозна-	d	D	Т	В	с	r	° r1	с	C ₀	e	Y	Yo
чение								K]	H			
7515A	75	130	33,25	31	27	2,5	0,8	157,0	130,0	0,43	1,4	0,8
7516A	80	140	35,25	33	28	3,0	1,0	176,0				0,8
7517A	85	150	38,5	36	30	3,0	1,0	201,0	180,0	0,43	1,4	0,8
7520A	100	180	49,00	46	39	3,5	1,2	297,0	280,0		1,7	0,9
L		İ		L	l	L	İ		L		l	

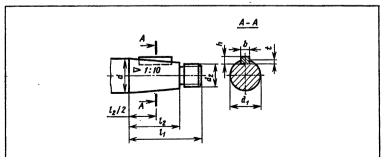
П8. Шарикоподшипники упорные. Размеры, мм

Легкая серня

0000	38000	,	,		Н	77			h	C	C_0
8,000	38000	d	d_2	D	н	H_1	а	r	n	κI	ĭ
8204	38204	20	15	40	1.4	26	6	1	4	19,9	30,0
8205	38205	25	20	47	15	28	7	1	4,2	24,7	40,0
8206	38206	30	25	52	16	29	7	1	4,8	25,5	46,0
8207	38207	35	30	62	18	34	8	1,5	5	35,1	66,5
8208	38208	40	30	68	19	36	9	1,5	5,2	39,7	78,5
8209	38209	45	35	73	20	37	9	1,5	5,7	41,0	89,5
8210	38210	50	40	78	22	39	9	1,5	6,3	43,0	103,0
8211	38211	55	45	90	25	45	10	1,5	7,1	63,7	127,0
8212	38212	60	50	95	26	46	10	1,5	7,3	65,0	150,0
8213	-	65	-	100	27	-	-	1,5	8,0	66,3	150,0
8214	36214	70	55	105	27	47	10	1,5	8,0	70,0	158,0
8215	-	75	-	110	27	-	-	1,5	8,0	71,5	166,0
8216	38216	80	65	115	28	48	10	1,5	8,3	80,0	188,0
8217	38217	85	70	125	31	55	12	1,5	8,8	85,0	235,0
8218	-	90	-	135	35	 	-	2	10,5	108,0	285,0
8220	-	100	_	150	38	-	-	2	11,1	133,0	330,0
			!	l 	l	l	Ī	l	ı	!	
				C	редня	я сер	HSI				1
8305	-	25	-	52	18	-	-	1,5	5	33,8	50,0
8306	-	30	-	60	21	-	-	1,5	6	40,3	66,5
8307	-	35	-	68	24	-	-	1,5	7	49,4	83,5
8308	-	40	-	78	26	-	-	1,5	7,6	65,0	107,0
8309	-	45	-	85	28	-	-	1,5	8,2	71,5	130,0
8310	-	50	-	95	31	-	- '	2	9,1	87,1	161,0
8311	-	55	-	105	35	-	-	2	10,1	112,0	213,0
8312	-	60	-	110	35	-	-	2 2 2	10,1	112,0	213,0
8313		65	-	115	36	-	-	2	10,5	114,0	249,0
8314	-	70	-	125	40	-	-	2	12	133,0	290,0
8315		75	-	135	44		-	2,5	13	153,0	340,0
8316	38316	80	65	140	44	79	18	2,5	13	159,0	340,0
8318	-	90	-	155	50	-	-	2,5	14,5	199,0	445,0
8320	_	100	-	170	55	1 -	_	2,5	16	238,0	480,0
п	римеч	ание	Разм	$lep d_1 \geqslant$	> d + 0	0,2 мі	м.	I	.l		·

П9. Подшининки гибкие шариковые радиальные (по ГОСТ 23179—78)
Размеры, мм

Обозначения подшипников	ď	D	b	r
806 808 809 811 812 815 818 822 824 830 836 844 848 860 862 872	30 40 45 55 60 75 90 110 120 150 180 220 240 300 310 360	42 52 62 72 80 100 120 150 160 200 240 300 320 400 420 480	7 8 9 11 13 15 18 24 30 35 45 48 60	1,0 1,5 2,5


Примечания: 1. Твердость колец подшипника должна быть; внутреннего кольца *HRC* 61-65; наружного кольца *HRC* 55-60.

- 2. Остальные технические требования к подшипникам по ГОСТ 520 71.
- 3. Наибольшее увеличение наружного диаметра подшипника по большой оси кулачка от деформации при монтаже не должно превышать 0,02 его номинальной величины.

Пример условного обозначения гибкого шарикового радиального подшипника с d=60 мм, D=80 мм и B=13 мм:

Подшипник 812 ГОСТ 23179-78

П10. Основные размеры конических концов валов с конусностью 1:10, мм (по ГОСТ 12081-72)

Продолжение П.10

***	1	ı	ŀ	2	a	4	ь	h	,	d ₂
Номиналь- ный диа-			Исп	олнен	ие			."	1	a_2
метр <i>d</i>	1	2	1	2	1	2				
20 22	50	36	36	22	18, 20 20, 20	18, 90 20, 90	4	4	2,5 2,5	M12×1,25
25 28	60°	42	42	24	22,90 25,90	23,80 26,80	5	5	3,0	M16×1,5
32 36	80	58	58	36	29,10 33,10	30,20 34,20	6 6	6 6	3,5 3,5	M20×1,5 M24×2
40 45 50 56	110	82	82	54 ⁻	35,90 40,90 45,90 51,90	37,30 42,30 47,30 53,30	10 12 12 14	8	5,0 5,0 5,0 5,5	M24 × 2 M30 × 2 M36 × 3
63 71	110	105	105	70	57,75 64,75	59,50 67,50	16 18	10 11	6,0 7,0	M42 × 3 M48 × 3
80 90 95	170	130	130	90	73,50 83,50 88,50	75,50 85,50 90,50	20 - 22	_	7,5 - 9,0	M56×4 - M64×4

- 1. Березовский Ю. Н., Чернилевский Д. В., Петров М. С. Детали машин. М.: Машиностроение, 1983. 384 с.
- 2. Боков В. Н., Чернилевский Д. В., Будько П. П. Детали машин: Атлас конструкций. М.: Машиностроение, 1983. 575 с.
- 3. Волновые зубчатые передачи/Под ред. Д. П. Волкова, А. Ф. Крайнева. Киев: Техніка, 1976, 216 с.
- 4. Готовцев А. А., Столбин Г. Б., Котенок И. П. Проектирование цепных передач: Справочник. 2-е изд. М.: Машиностроение, 1982. 326 с.
- Гузенков П. Г. Детали машин. 4-е изд. М.: Высшая школа, 1986. 360 с.
- 6. Детали машин: Атлас конструкций/Под ред Д. Н. Решетова. М.: Машиностроение, 1979. 367 с.
- 7. Дружинин Н. С., Цылбов П. П. Выполнение чертежей по ЕСКД. М.: Изд-во стандартов, 1975. 542 с.
- 8. Дунаев П. Ф., Леликов О. П. Детали машин. Курсовое проектирование. М.: Высшая школа, 1984. 336 с.
- 9. Иванов М. Н. Волновые зубчатые передачи. М.. Высшая школа, 1981. 180 с.
- 10. Кузьмин А. В., Чернии И. М., Козинцев Б. П. Расчеты деталей машин, 3-е изд. Минск: Вышэйшая школа, 1986, 402 с.
- Куклин Н. Г., Куклина Г. С. Детали машин. 3-е изд. М.: Высшая школа, 1984. 310 с.
- 12. Мотор-редукторы и редукторы: Каталог. М.: Изд-во стандартов, 1978. 311 с.
- 13. **Перель Л. Я.** Подши чения. М.: Машиңостроение, 588 с.
- 4. Планетарные передачи: правочник/Под ред. В. Н. Кудрявшем и Ю. Н. Кирдяшева. Л.: машиностроение, 1977, 536 с.
- 15. Поляков В. С., Барбаш И. Д. Муфты. Л.: Машиностроение, 1973. 336 с.
- 16. Подшинники качения: Справочник-каталог/Под ред. Р. В. Коросталиевского и В. Н. Нарышкина. М.: Машиностроение, 1984. 280 с.
- 17. **Проектирование** механических передач/Под ред. С. А. Чернавского, 5-е изд. М. Машиностроение, 1984. 558 с.

В

- Валы Конструирование 167, 168 Нагрузки 158—161 Размеры конических концов валов с конусностью 1:10 406, 407 Расчет 161—167 Шероховатость посадочных поверхностей 199
- гладкие 167
- ступенчатые 167, 168

Вал-шестерня 184, 185, 197, 232, 233

Волновые передачи зубчатые — Генераторы волн деформации 109—111

- Кинематические схемы, их параметры 96, 98
- Конструкции гибких колес 108, 109
- Расчет 103-108, 113-117 см. также Расчет волновой зубчатой передачи
- Способы крепления гибкой оболочки к ведомому валу 97
- Схемы генераторов волновых передач 97

Г

Гайки круглые шлицевые 188, 189

Д

Допуск — Понятие 257 Допуски формы и расположения поверхностей 264, 265

3

Зазор 258 Зубчатые передачи закрытые 27—

- 29 Формулы для проектировочного расчета 31, 32
- открытые 27—29
- Зубчатые цилиндрические передачи — Основные параметры передач, выполняемых без смещения 45
- косозубые Силы в зацеплении 158, 159 Формула для проверочного расчета на выносливость 31
- прямозубые Силы в зацеплении 158, 159 Формула для проверочного расчета на выносливость 31
- шевронные Силы в зацеплении 158, 159 – Особенности расчета на выносливость 46, 47

К

- Клиноременные передачи 130— 139— Алгоритм расчета 137, 138
- Номинальная мощность, передаваемая одним клиновым ремнем 132—134
- Способы регулирования натяжения ремней 134
- Шкивы 138, 139
- Колеса зубчатые Конструирование 230—233, 235, 236 Материалы 34, 35, 44, 45
- Колеса зубчатые конические Модуль 36 — Расчет 47 — 53
- прямозубые Геометрические параметры 49, 50
- с косыми и круговыми зубьями 51 53
- Колеса зубчатые цилиндрические — Модуль 36
- Последовательность проектировочного расчета 35—41

- Предел контактной выносливости при базовом числе циклов 34
- Расчет зубьев на выносливость при изгибе 41 46
- Расчет на контактную выносливость 29 35
- Формулы для геометрического расчета 45

Колеса червячиме — Конструирование 233—235, 238 — Материалы 65—68 — Модуль 56 — Основные параметры 57—59

Кольца пружинные упорные плоские внутренние концентрические и канавки для них 195, 196

 эксцентрические и канавки для них 194

Кольца пружинные упорные плоские наружные концентрические и канавки для них 192, 193

- эксцентрические и канавки для них 191, 192

Коническая передача косозубая — Силы в зацеплении 159—161

 прямозубая — Силы в зацеплении 159

- с криволинейными зубьями - Силы в зацеплении 159-161 КПД механических передач 5

M

Манжеты резиновые армированные 209

Масла, применяемые для смазывания зубчатых и червячных передач 253— Выбор сорта масла 254— Контроль уровня масла 254, 255

Маслоуказатели 254, 255

Материалы смазочные жидкие 204, 205

– пластичные 203—205, 208

Мотор-редукторы 25, 26, 100-102 Муфты втулочные 268, 270, 271

компенсирующие 273кулачково-дисковые 273

Муфты предохранительные 282— 288

кулачковые 283 – 285

- фрикционные дисковые 285 288
- шариковые 283 285

Муфты с торообразной оболочкой 273, 280, 281

- упругие втулочно-пальцевые 273, 277, 278

упругие со звездочкой 273,
 279

фланцевые 268, 269

цепные 273 – 276

H

Натяг 258

0

Отклонення предельные валов 262 — отверстий 260

П

Передачи волновые — см. Волновые передачи зубчатые

- зубчатые - см. Зубчатые передачи

- конические - см. Коническая передача

 планетарные – см. Планетарные передачи

 ременные — см. Клиноременные передачи, Передачи поликлиновыми ремнями, Плоскоременные передачи

цепные – см. Цепные передачи
 цилиндрические – см. Зубча-

тые цилиндрические передачи — червячные — см. Червячные передачи

Передачи поликлиновыми ремнями 139—145— Номограммы для определения числа клиньев поликлинового ремня 142—144— Пример расчета 142—145

Планетарные передачи — Кинематический расчет и кинематические схемы 69—73

- Конструкции водил 89, 91

- Конструкции корпусов 91

- Конструкции сателлитов 89, 90

 Конструкции центральных колес 87—89

- Пример расчета 93-95

- Расчет зубьев на прочность 80-87

Смазывание 92, 93

 Условие вхождения зубьев в зацепление при равных углах расположения сателлитов 75

- Условие соосности 73, 74
- Условие соседства 74

Плоскоременные передачи 118-129 — Последовательность расчета 124-127 - Схема 118-Шкивы 124, 128-130

открытые 118

Подилиники качения - Виды нагружения колец 201

- Выбор 211—223
- Классы точности 200
- Крепление на валу и в корпусе 186-196
- Посадки 202
- Предельные отклонения колец 202, 203
- Расположение полей допусков 200
- Смазывание уплотнение И 203 - 211
- Схемы установки 180—186
- Условные обозначения 179, 180
- Формулы для расчета осевых нагрузок 217

Подшинники скольжения — Исходные данные для проектирования опор скольжения 223

- Материалы 223, 224
- Пример расчета 227 229
- Смазывание 224 Схемы нагружения 225, 226

Поле допуска 257-259 - Примеры построения полей допусков 260, 261

Посадки - Обозначение 259, 260 - Понятие 258

- основных деталей передач 263
- подшипников качения 200—203

Привод — Передаточное отношение 6-8 - Установочные рамы и плиты 247-250

- с одноступенчатым коническим прямозубым редуктором цепной передачей — Расчет и конструирование 338 - 363
- с одноступенчатым цилиндрическим косозубым редуктором и клиноременной передачей — Расчет 327-338
- с одноступенчатым цилиндрическим косозубым редуктором цепной передачей - Проектирование 289 — 322

Размер номинальный 257

предельный 257

Рамы для установки привода 247 — 250

Расчет волновой зубчатой передачи - КПД передачи 105

- Определение коэффициента смещения производящего контура 104
- Проверочный расчет на прочность гибкого колеса 105-107

Размеры колес 104, 105

Расчет зубчатых передач проверочный 27

- проектировочный 27

Редукторы - Конструирование опорных узлов 196—200

- Конструирование корпусов 238 — 247
- Общие сведения 9, 10
- Ориентировочные размеры элементов литых корпусов 241, 242
- Смазывание 250 255
- Тепловой расчет 255—257

Редукторы волновые зубчатые одноступенчатые 23-25

- зубчато-червячные двухступенчатые 21, 22
- конические одноступенчатые 11 - 13
- конические с круговыми зубьями — Расчет 363 — 367
- коническо-цилиндрические 17,
- планетарные 22, 23
- цилиндрические косозубые -Расчет 323-327
- цилиндрические двухступенчатые 13-17
- цилиндрические одноступенчатые 10,11
- червячные 18-21 КПД 58
- червячные двухступенчатые 21,
- червячные одноступенчатые Проектирование 367-385
- червячные одноступенчатые общего применения 385 - 389

Ремни клиновые 131

- кожаные 119, 120
- поликлиновые 140

резинотканевые 118, 119хлопчатобумажные 119, 120

404

- Роликоподшипники конические 178
 конические однорядные 401—
- с короткими цилиндрическими роликами 177, 397, 398

C

Смазывание картерное 250-252 - циркуляционное 252, 253 Соединения шлицевые 170-175 - шпоночные 168-171 Спецификация 319-321

У

Уплотнения комбинированные 211

лабиринтные 209, 210

манжетные 208-211центробежного типа 211

- щелевые 209, 210

Устройства уплотняющие 208-211

Ц

Непи приводные зубчатые 154—157
— роликовые 146—154

Цепные передачи 146—157— Нагрузка на валы звездочек 161
— Пример расчета 151—154
— Расчет передачи приводными роликовыми цепями 149—151
— Схема 148

ч

Червяк — Конструирование 233, 234, 237 — Материалы 65 — 68 —

Основные параметры 55-57

– архимедов 56

Червячные передачи — Кинематика передачи 54, 55

- Определение чисел зубьев 75 -80
- Основные параметры 55-59
- Расчет зубьев червячных колес на выносливость по напряжениям изгиба 63, 64
- Расчет зубьев червячных колес на контактную выносливость 60-63

Ш

Шайбы стопорные многолапчатые 189, 190

Шарнкоподшипники гибкие радиальные 406

- радиально-упорные 177, 178
- радиально-упорные однорядные 399 – 401
- радиальные двухрядные сферические 177, 395, 396
- радиальные однорядные 176,177, 392 395
- упорные 178, 179, 404, 405 Шероховатость поверхности — Назначение параметров 266, 267 Шкивы для поликлиновых ремней 141

Шпонки призматические 169 — сегментные 171 Штифты конические 243

Э

Электродвигатели — Выбор 5, 6 — Определение мощности 4, 5

асинхронные — Габаритные и установочные размеры 391, 392 — Мощность и частота вращения 390

ОГЛАВЛЕНИЕ

Предисловие	3
Глава I. Кинематический расчет привода (С. А. Чернавский)	4
§ 1.1. Определение требуемой мощности электродвигателя	4
§ 1.2. Выбор электродвигателя	5
§ 1.3. Передаточное отношение привода	6
Глава II. Сведения о редукторах (И. М. Чернин)	9
§ 2.1. Общие сведения	9
§ 2.2. Обзор основных типов редукторов	10
Глава III. Зубчатые передачи (И. М. Чернин)	27
§ 3.1. Общие сведения	27
§ 3.2. Расчет цилиндрических зубчатых колес на контактную	
выносливость	29
§ 3.3. Расчет зубьев цилиндрических колес на выносливость	
при изгибе	41
§ 3.4. Расчет конических зубчатых колес	47
Глава IV. Червячные передачи (И. М. Чернин)	54
§ 4.1. Общие сведения и кинематика передачи	54
§ 4.2. Основные параметры передачи	55
§ 4.3. Расчеты на контактную выносливость и на выносливость	
при изгибе	59
§ 4.4. Коэффициент нагрузки. Материалы и допускаемые напря-	
жения	64
Глава V. Планетарные зубчатые передачи (В. П. Козинцов)	69
§ 5.1. Общие сведения и кинематический расчет	69
§ 5.2. Условия собираемости соосных и многопоточных пере-	
дач	73
§ 5.3. Определение чисел зубьев колес	75
§ 5.4. Расчет зубъев планетарных передач на прочность	.80
§ 5.5. Конструкции планетарных передач	81
§ 5.6. Смазывание планетарных передач	92
§ 5.7. Пример расчета планетарной передачи	93
	44.

1 лава VI. Волновые зубчатые передачи (Б. П. Козинцов)	96
§ 6.1. Общие сведения	96
§ 6.2. Расчет волновой зубчатой передачи	103
§ 6.3. Конструкции деталей волновых передач	108
§ 6.4. Пример расчета волновой передачи	113
Глава VII. Ременные и цепные передачи (С. А. Чернавский)	118
§ 7.1. Плоскоременные передачи	118
§ .7.2. Клиноременные передачи	130
§ 7.3. Передачи поликлиновыми ремнями (И. М. Чернин)	139
§ 7.4. Цепные передачи	146
Глава VIII. Валы (Г. М. Ицкович)	158
§-8.1. Нагрузки валов	158
§ 8.2. Расчет валов	161
§ 8.3. Конструирование валов	167
§ 8.4. Шпоночные и шлицевые соединения	168
Глава IX. Опоры валов (К. Н. Боков)	176
§ 9.1. Опоры качения	176
§ 9.2. Схемы установки подшипников качения	180
§ 9.3. Крепление подшипников на валу и в корпусе	186
§ 9.4. Конструирование опорных узлов редукторов	196
§ 9.5. Классы точности и посадки подшипников качения	200
§ 9.6. Смазывание и уплотнение подшипниковых узлов	203
§ 9.7. Выбор подшипников качения	211
§ 9.8. Подшипники скольжения (С. А. Чернавский)	223
Глава Х. Конструирование деталей редукторов (И. М. Чернин)	230
§ 10.1. Конструирование зубчатых и червячных колес и червяков	230
§ 10.2. Конструирование корпусов редукторов	238
§ 10.3. Установочные рамы и плиты	247
§ 10.4. Смазывание редукторов	250
§ 10.5. Тепновой расчет редукторов	255
§ 10.6. Допуски и посадки деталей передач	257
ватость поверхности	263
Глава XI. Муфты (С. А. Чернавский)	268
§ 11.1. Муфты для постоянного соединения валов	
§ 11.1. Муфты для постоянного соединения валов	268 282
•	202
Глава XII. Примеры расчета и проектирования приводов (И. М. Чернин)	289
§ 12.1. Проектирование привода с одноступенчатым цилиндри-	207
у 12.1. проектирование привода с одноступенчатым цилиндрическим косозубым редуктором и цепной передачей	289
ческим косозубым редуктором и ценной передачей § 12.2. Расчет цилиндрического косозубого редуктора с коле-	209
сами из стали повышенной твердости	323
сани из стали повышенном твердости	343

§	12.3.	Расчет		пр	ивс	ода		С	•	эдн	OC	туг	ен	чат	LPIN	1	Ц	ил)	инд	ри	-	
		ческим																				327
		дачей																				321
§	12.4.	Проект	гир	ова	НН	e n	ри	вод	ца	Ç o	ДН	OC7	уп	енч	ат	ЫМ	K	ЭНИ	чес	КИ	M	
•		прямо	зуб	ым	p	еду	KT	ope	MC	И	це	пн	ой	пе	pe,	дач	ей					338
		Расчет																				363
§	12.6.	Проек	гир	ова	ни	ıe	ΟД	но	сту	/пе	нча	то	го	ч	epi	яч	ног	O.	p€	ду	к-	
		тора																				367
8	12.7.	Расчет	ΟĮ	цно	СТ	упе	нча	ато	го	че	рв.	ячі	or	0 1	ред	укт	гор	a	обі	цеі	ю	
Ŭ		приме	нен	ия		•				•	•			•		•	•					385
п	рил	ожен	и я																			390
	-	литера																				408
		тинт		_														•				409

Учебное пособие

Сергей Александрович Чернавский, Кирилл Николаевич Боков, Илья Моисеевич Чернин и др.

КУРСОВОЕ ПРОЕКТИРОВАНИЕ ДЕТАЛЕЙ МАШИН

Редактор Т. С. Грачева
Художественный редактор С. С. Водчиц
Обложка художника К. К. Федорова
Технический редактор Т. С. Старых
Корректоры О. Е. Мишина и Л. Я. Шабашова

ИБ № 4981

Сдано в набор 16.07.86. Подписано в печать 26.03.87. Формат $84 \times 108^1/_{32}$. Бумага кн.-журн. Гарнитура таймс. Печать высокая. Усл. печ. л. 21,84. Усл. кр.-отт. 21,84. Уч.-изд. л. 22,4. Тираж 324000 экз. (3-й завод 244001 — 324000 экз.) . Заказ № 422. Цена 1 р.

Ордена Трудового Красного Знамени издательство "Машиностроение", 107076, Москва, Стромынский пер., 4.

Отпечатано в Ленинградской типографии № 6 ордена Трудового Красного Знамени Ленинградского объединения Техинческая книга" им. Евгении Соколовой Союзполиграфпрома при Государственном комитете СССР по делам издательств, полиграфии и книжной торговли. 193144, Ленинград, ул. Моисеенко, 10, с диапозитивов, изготовленных в ордена Октябрьской Революции, ордена Трудового Красного Знамени Ленинградском производственио-техническом объединении "Печатный двор" имени А.М. Горького Союзполиграфпрома при Государственном комитете СССР по делам издательств, полиграфии и книжной торговли. 197136, Ленинград. П-136. Чкаловский пр. 15.

Kypcoboc hipockterreneme metanem malimit

